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1. Introduction
In this paper we compare spite and risk as possible motives for deviations from risk neutral
Bayesian Nash equilibria (RNBNE) in the second-price all-pay auction. With the help of a
laboratory experiment we �nd that spite explains bidding behavior in the second-price all-
pay auction better than risk. This paper makes three contributions:

Theoretical To the best of our knowledge we are the �rst to extend the theoretical model
of spiteful behavior and risk averse behavior to second-price all-pay auctions.

Experimental To the best of our knowledge we are the �rst to relate observed bidding
behavior to measured spite.

Main We compare two alternative explanations for overbidding: risk versus spite. We show
that in the second-price all-pay auction spite can explain behavior better than risk
aversion.

Auctions are a relevant part of everyday life. Auctions are commonly used as a selling mech-
anisms for example in online auctions (like eBay), government auctions (like spectrum auc-
tions) and at charity events (like silent auctions). The second-price all-pay auction, which is
equivalent to a war of attrition, presents an especially interesting environment. The second-
price all-pay auction is often used as a model for market and non-market interaction. For
example, �ghts between animals (Riley, 1980; Smith, 1974)1, competition between �rms (Fu-
denberg and Tirole, 1986; Ghemawat and Nalebu�, 1985; Oprea et al., 2013), the voluntary
provision of public goods (Bilodeau et al., 2004), legal expenditures in litigation environments
(Baye et al., 2005), the settlement of strikes, �scal and political stabilization, the timing of ex-
ploratory oil drilling, and many more (see Hörisch and Kirchkamp, 2010, p. 1) are applications
of all-pay-auctions. The second-price all-pay auction can also be seen as a competition be-
tween two agents when the rewards are delayed until agreement is reached, as suggested
by Nalebu� and Riley (1985). Fudenberg and Tirole (1986) also use the war of attrition to
study optimal exit from an industry. Thus, having a detailed understanding of behavior in
this situation is crucial for economists.

Risk neutral Bayesian Nash equilibria (RNBNE) can be used to derive benchmark pre-
dictions for these auction formats. However, for many auction formats observational and
laboratory evidence suggests that bidders do not always follow the RNBNE. Bids tend to
be higher than the RNBNE in all-pay auctions,2 in rent-seeking contests,3 and in winner-
pay auctions.4 Several authors propose explanations why bids might deviate from RNBNE.5
Explanations, like risk aversion, joy of winning, anticipated regret etc., work for some, but

1Smith (1974) uses a war-of-attrition game with common valuations to model �ghts between animals.
2See Noussair and Silver (2006); Ernst and Thöni (2013); Goeree et al. (2002); Chen et al. (2015); Lugovskyy

et al. (2010).
3Potters et al. (1998).
4Morgan et al. (2003); Andreoni et al. (2007); Barut et al. (2002).
5Filiz-Ozbay and Ozbay (2007, 2010); Cooper and Fang (2008); Andreoni et al. (2007); Cox et al. (1985, 1988);

Fibich et al. (2006); Kagel and Levin (1993); Kirchkamp and Reiss (2008); Engelbrecht-Wiggans and Katok
(2009); Kirchkamp et al. (2008); Armantier and Treich (2009).
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not for all auction formats.6 Among these explanations, risk aversion is perhaps the most
common explanation. A more recent explanation, however, is the spite motive.

In this paper we suggest that, at least in some situations, spite might organize our data
better than risk aversion. We present equilibrium analyses and empirical evidence from a
conducted experiment.

As a workhorse we use the second-price all-pay auction. In this auction format equilibrium
predictions di�er for risk aversion and for spite. Spite leads to an increase in equilibrium
bids as long as valuations are not too high. Risk aversion, however, leads to a decrease in
equilibrium bids.

In our experiment, we measure spitefulness, preferences for risk, and bids. We �nd that
spite explains bidding behavior better than risk in the second-price all-pay auction.

The remainder of the paper is structured as follows: We brie�y summarize the relevant
literature in Section 2. In Section 3 we present the model and the theoretical predictions.
Section 4 will explain the design of the experiment. In Section 5 we show the results of the
experiment. Section 6 concludes.

2. Literature
In this paper we study second-price all-pay auctions with sealed-bids and private informa-
tion.7 We restrict our attention to auctions where the highest bidder wins.8 We also assume
that the number of bidders is known.9

2.1. Literature on overbidding
In many experiments, overbidding (relative to RNBNE) has been observed and explained with
the help of a number of motives, ranging from risk aversion, over anticipated regret, to spite.
Obviously, we cannot do right by the vast literature on overbidding. Nevertheless, we will
present a few selected �ndings from this literature. Three particularly important motives to
explain overbidding are: risk aversion, anticipated regret and joy of winning.

Risk aversion has been suggested by Cox et al. (1985, 1988) as an explanation of overbid-
ding. In the context of all-pay auctions Fibich et al. (2006) study risk averse players to explain

6Kagel and Levin (1993); Kirchkamp et al. (2008); Engelbrecht-Wiggans and Katok (2009); Andreoni et al.
(2007); Katuscak et al. (2013).

7Equilibria for all-pay auctions with common values are provided by Hendricks et al. (1988) and Kovenock
et al. (1996). Sacco and Schmutzler (2008) provide mixed strategy equilibria for common value auctions
where the prize is in�uenced by the own behavior. Feess et al. (2008) show a pure equilibrium strategy in
case of handicapped players. Klose and Kovenock (2015) show equilibria for the case of externalities which
depend on the bidders’ identities. Bertoletti (2016) show equilibria for common value all-pay auctions with
reserve price. Dechenaux and Mancini (2008) and Baye et al. (2005) model ligation systems with all-pay
auctions. The case of a�liated valuations is studied by Krishna and Morgan (1997).

Intermediate situations between the �rst-price and second-price all-pay auction are studied by Albano
(2001).

8The survey by Dechenaux et al. (2015) includes rent-seeking games where the ex-post allocation is stochastic
and where also bidders who did not submit the highest bid have a chance to win the auction.

9Bos (2012) considers the situation where the number of bidders is unknown.
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overbidding. However, Kagel and Levin (1993), Kirchkamp et al. (2008), and Engelbrecht-
Wiggans and Katok (2009) argue that risk aversion might be by itself not enough to explain
overbidding. Kagel and Levin (1993) point out that risk aversion does not explain bidding
behavior in third-price auctions very well. In equilibrium risk averse bidders should bid less
than the RNBNE. Bidders in their experiment, however, bid more.

Anticipated regret is another motive to explain overbidding in winner-pay auctions. Filiz-
Ozbay and Ozbay (2007, 2010) propose that players anticipate their regret after a wrong
choice. Using laboratory experiments Filiz-Ozbay and Ozbay (2007, 2010) provide empirical
evidence for their supposition. However, Katuscak et al. (2013) do not replicate this �nding
with a large sample and thus argue against anticipated regret.

An additional explanation for overbidding suggested by Cooper and Fang (2008) is joy of
winning. The idea behind this motive is that players receive additional utility from merely
winning the auction. However, Andreoni et al. (2007) provide evidence against joy of win-
ning.10

Even though overbidding is very common in many auctions types, it is worth noting that
some auctions don’t seem to be a�ected by overbidding. For example, in the English auction
with a�liated private information – which is rather di�erent from our setting – bids in ex-
periments converge quickly to the RNBNE (Kagel et al., 1987). In this paper we do not and
cannot speak to all auctions formats. The main goal of this paper is to show that in some
auctions, in our case speci�cally the second-price all-pay auction, spite is a better predictor
for behavior than risk aversion.

We pick risk aversion as the main comparison to spite. The rationale behind our choice
is that risk aversion seems to be the strongest competitor in explaining deviations from the
equilibrium. We pick the second-price all-pay auction since theoretical predictions for risk
aversion and spite are nicely disentangled in this auction and since this auction is often used
as a model of very competitive situations.11

2.2. Literature on spite
In addition to the above-discussed explanations, spite has been suggested as another motive
for overbidding. For example, Andreoni et al. (2007) suggest that spite may cause overbid-
ding. Bartling and Netzer (2016, p.23) propose that “spiteful preferences are an important
determinant of overbidding in the second-price auction”. Several recent papers study the

10A large number of other factors, internal and external to the bidders, have been studied. Among the external
factors, it has been shown that the speed of the auction (Katok and Kwasnica, 2008), the structure of the
presented games (Cox and James, 2012) and outside options (Kirchkamp et al., 2009) in�uence bids. Among
the factors internal to bidders learning (Güth et al., 2003; Dittrich et al., 2012; Ockenfels and Selten, 2005),
information provision (Kagel et al., 1987; Hyndman et al., 2012), bidding heuristics (Kirchkamp and Reiss,
2008), bounded rationality (Anderson et al., 1998), inability to assess winning probabilities (Armantier and
Treich, 2009), the Allais paradox (Nakajima, 2011), and even the menstrual cycle (Chen et al., 2013) have
been shown to relate to bidding behavior.

11For example the war-of-attrition (Riley, 1980; Smith, 1974), competition between �rms (Fudenberg and Tirole,
1986; Ghemawat and Nalebu�, 1985; Oprea et al., 2013), legal expenditures in litigation environments (Baye
et al., 2005). More examples and applications of the second-price all-pay auction can be found in Hörisch
and Kirchkamp (2010).
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impact of spite on equilibrium bids. Morgan et al. (2003) may have been the �rst to consider
spite in the equilibrium for winner-pay auctions. Similarly, Brandt et al. (2007); Sandholm
and Tang (2012); Sandholm and Sharma (2010) and Mill (2017) study equilibrium bids with
spiteful preferences for winner-pay auctions. Further, Nishimura et al. (2011) study spite
in common-valuations-auctions and, most recently, Bartling et al. (2017) consider equilibria
where bidders could have spiteful preferences towards the auctioneer. However, all these
investigations have primarily been of theoretical nature.

While the above mentioned studies suggest spite as a theoretically convenient explanation
of overbidding in auctions, spite also seems to be empirically a common motive in several
contexts. For example, Saijo and Nakamura (1995) �nd spiteful behavior in Voluntary Contri-
bution Mechanisms.12 Further, Fehr et al. (2008) use experiments to show that spiteful behav-
ior is rather wide spread in the least developed parts of India. To the best of our knowledge,
the two only papers studying spite empirically in auctions are Kimbrough and Reiss (2012)
and Bartling et al. (2017). Kimbrough and Reiss investigate behavior in a modi�ed second-
price winner-pay auction. In their experiment losers of an auction can (and frequently do)
increase their own bid to reduce the winner’s payo�. Such an increase in bids is consistent
with spiteful behavior. Bartling et al. (2017) study whether spiteful preferences towards a
seller a�ects bids. Bartling et al. exogenously vary the presence of human subjects in the
roles of the seller to answer whether spite towards the seller might be at play. They do not
�nd any systematic evidence of spiteful preferences.

To the best of our knowledge, no paper studies spite in all-pay auctions. More importantly,
no paper has measured spite and combined a theory of spiteful bidding with actually spiteful
behavior in an auction-setting.13

While spiteful preferences seem a reasonable motive in auctions, prosocial preferences
might also be suggested as a motive. It has been widely documented that prosocial pref-
erences play an important role in many market-interactions. From dictator games (Engel,
2011), over bargaining decisions (Güth and Kocher, 2014) to cooperation behavior (Ledyard,
1994), prosocial motives are relevant. Prosocial preferences, however, have not been dis-
cussed much in competitive settings. For example, Mago et al. (2014) discuss prosocial pref-
erences in contests and Lim (2010) discuss prosocial preferences in rank-order sales tourna-
ments. Here, we focus on spite as one special form of other-regarding preferences.

In the next section, we will determine equilibrium bids for risk-averse and for spiteful
bidders14 in the context of the second-price all-pay auction.

12Cason et al. (2002) show that this pattern did not prevail in the U.S.
13We use this procedure in a separate paper also for the �rst-price winner-pay auction. However, we do not

combine both papers. The reason we do not combine both papers is threefold: 1) both papers are aimed
at a di�erent auction formats which are not really comparable, 2) combining both papers would make the
paper too long and most importantly 3) the paper would lose its focus as both papers are aimed at di�erent
questions.

14We realize that bids in a laboratory experiment are seldom equilibrium bids. However, we think it is useful
to use the Bayesian Nash equilibrium as a benchmark. It would be possible to allow for di�erent types of
equilibria or to allow for out-of-equilibrium behavior. This, however, would go beyond the scope and the
page limit of this paper.
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3. Model
In the following, we will derive the Bayesian Nash equilibrium for spiteful bidders and for
risk averse bidders in the second-price all-pay auction.

3.1. Spite
Consider a situation with one prize and two risk neutral bidders, k ∈ {i, j}. Bidders have a
utility function u(x) and private valuations vk. Valuations follow a distribution function F
with density function f, i.e. v ∼ F(0, v), and f(x) = dF(x)/dx. We assume that each bidder
k submits a bid bk following a monotonically increasing bidding function bk = βk(vk).
Consider the case bj ≥ bi. In the second-price all-pay auction both bidders pay the second
highest bid (bi). The prize is allocated to the bidder with the highest bid. If bi = bj, the prize
is distributed randomly.

For the candidate equilibrium we assume βk(0) = 0.15 Furthermore, we assume that the
�rst derivative β′k(x) = dβk(x)/dx and the inverse β−1

k (bk) = vk exist. The payo� of the
winning bidder j is (vj − bi). The payo� of the losing bidder i is −bi.

In line with the literature on spite in auctions16 we assume that a spiteful loser i experi-
ences a disutility α · (vj − bi) where α describes the amount of spite. A non-spiteful bidder
is characterized by α = 0. Here we assume that α ∈ [0, 1). We do not consider α < 0 which
could represent sympathy or pro�t sharing. We also rule outα > 1, i.e. that an other bidder’s
gain is more important than the own loss. This (standard) model of spite implies a number
of simpli�cations: Spite only a�ects the loser of the auction. Spite is linear and independent
of the valuation.17 Spite is symmetric, i.e. all bidders have the same α.18

We call ΦII-AP
Spite(bi, vi) the payo� of bidder i:

ΦII-AP
Spite(bi, vi) =


u (vi − bj) if bi > bj (i wins)
1
2
u (vi − bi) +

1
2
u (−bi − α(vj − bi)) if bi = bj (a tie)

u (−bi − α(vj − bi)) if bi < bj (j wins)
(1)

We consider a bidder i with valuation v who makes a bid b. The opponent, bidder j with
valuation vj, uses a bid function bj = βj(vj). The expected utility of a spiteful bidder i is

15We assume a monotonic and symmetric bidding function. A sel�sh bidder with a valuation of zero could only
win if the opponent has a valuation of zero, too. Hence, there is no bene�t of bidding anything above 0. For
a spiteful bidder it might make sense to bid above zero if the bid would be costless (standard second-price
winner-pay auction) as this spiteful bidder could reduce the payo� of the opponent by this increased bid.
However, in the all-pay case, one could never o�set the downside of paying for the own bid by making the
opponent bid more as long as α ≤ 1. Hence, zero is the best choice.

16See Bartling et al. (2017); Morgan et al. (2003); Brandt et al. (2007); Sandholm and Tang (2012); Sandholm and
Sharma (2010); Mill (2017).

17This is standard. It does not seem that our theoretical results hinge on the linearity assumption.
18This is a standard assumption. Modeling spite as a random variable would make the theoretical derivation

intractable. Further, in a situation where bidders have no information about their opponents, bidders might
follow the social-projection-bias (Krueger, 2007) and, hence, assume that their opponents are as spiteful as
they themselves.
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given as follows:

E(b, v) =
∫β−1

j (b)

0

u(v− βj(vj)) f(vj)dvj︸ ︷︷ ︸
bidder i wins and obtains the prize

and pays the loser’s bid

+

∫ v
β−1
j (b)

u(−b− α(vj − b)) f(vj)dvj︸ ︷︷ ︸
bidder i loses and pays the own bid
and additionally experiences spite

(2)

Rearranging the FOC yields:

β′j(β
−1
j (b)) =

(u(v− b) − u(−b− α(β−1
j (b) − b))) f(β−1

j (b))

(1− α)
∫v
β−1
j (b)

u(−b− α(vj − b))′ f(vj)dvj

For the symmetric equilibrium and risk neutrality we obtain19

β′j(v) =
v+ α(v− b) f(v)

(1− α)(1− F(v))
=

v(1+ α) f(v)

(1− α)(1− F(v))
−

α(b) f(v)

(1− α)(1− F(v))
. (3)

Solving the di�erential Equation (3) with initial value b(0) = 0 gives us the symmetric
equilibrium bidding function bII-AP

Spite:

bII-AP
Spite(v) =

α+ 1

1− α
(1− F(v))

α
1−α

∫v
0

s f(s)(1− F(s))
1
α−1 ds =

α+ 1

α

(
v−

∫v
0
(1− F(s))

α
α−1ds

(1− F(v))
α
α−1

)
(4)

For α = 0, Equation (4) becomes the familiar equilibrium bidding function for second-price
all-pay auctions without spite:

bII-AP := bII-AP
α=0 =

∫ v
0

s f(s)(1− F(s))−1 ds

For uniformly distributed valuations, F(x) = x, we have the following equilibrium bid:

bII-AP
Spite(v) =

(α+ 1)

α(2α− 1)

(
(1− α)

(
(1− v)

α
1−α − 1

)
+ vα

)
(5)

From Equation (5) we have limα→0 bII-AP
Spite(v) = − log(1 − v) − v and limα→1 bII-AP

Spite(v) = 2v.
Figure 1 illustrates the case of uniform valuations. The left graph in the Figure shows that
bids are monotonically increasing in valuations. To simplify the notation we assume in the
following that valuations v ∈ [0, 1]. Above we have assumed a monotonic and symmetric
bidding function. It is easy to see that our equilibrium bidding function in the second-price
all-pay auction satis�es this assumption.20 The right part of Figure 1 shows that bids are
increasing in spite if valuations are su�ciently small. For large valuations, equilibrium bids
19Of course, the payo� given by Equation 1 is not the only possibility to motivate Equation 3. For example,

we could in the case bi < bj (j wins), replace the payo� u (−bi − α(vj − bi)) by u (−bi − α(vi − bi)).
This new model would have a di�erent interpretation than spite. Here we only show that spite is one (out
of perhaps several) theoretical possibilities to explain this shape of a bidding function. However, in Section
5.4 we show that an empirical measure of spite is in line with this shape of the bidding function.

20The proof that an increasing bidding function exists is shown in Appendix A.
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Figure 1: Equilibrium bids in second-price all-pay auctions for spiteful bidders.
Equilibrium bids in second-price all-pay auctions for di�erent valuations v (left panel) and for di�erent levels
of spite α (right panel) for uniformly distributed valuations (see Equation (5)).

decrease when spite increases. Speci�cally, equilibrium bids decrease relative to the spite-
free RNBNE for valuations above v = 0.96 for high levels of spite (α > 0.8) and we expect to
�nd underbidding for small levels of spite (α > 0.1) for valuations above v = .99. Looking
again at Equation (5) we �nd the following:

Observation 1. For the case of uniformly distributed valuations in the second-price all-pay
auction bids increase in spite for low valuations. Bids decrease in spite for high valuations.

This observation can be interpreted as follows: For small valuations, a spiteful bidder can
increase the own utility by slightly increasing the own bid. Such an increase has two positive
e�ects for the bidder: 1) The increase reduces the chance of the other player winning (this
reduces the negative impact of spite), 2) The increase reduces the payo� of the other player
in case of a loss. These two positive e�ects outweigh the negative impact of a reduced payo�
due to a slightly higher bid. For larger valuations, these positive e�ects of an increased bid
are elevated up to a certain point. However, for very high valuations the situation reverses.
With high valuations the probability of losing is very small. At the same time, bids are
already above the own valuation of the prize. A competitor who wins in this situation will,
most likely, make a negative pro�t. Thus, a spiteful player considers losing in this situation
less harmful, perhaps even bene�cial, than a non-spiteful player, as the impact of spite in case
of a loss has (for high valuations) a positive e�ect on the own utility. By reducing the own
bid, a spiteful player increases the probability of the other player winning. At the same time
the spiteful player increases the harm to the other player. Hence, we predict overbidding for
low valuations and underbidding for high valuations.
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3.2. Risk aversion
To compare spite with risk aversion we will derive the equilibrium bidding function for risk
averse bidders. We assume that the risk preferences can be described as constant absolute risk
aversion (CARA).21 Again we assume two bidders k ∈ {i, j} who are competing for an object
which each bidder values with vk ∈ [0, 1]. Valuation are drawn from a distribution with
distribution function F(v) and density function f(v). Both bidders k use bidding functions
βk(vk). Both bidders have the same utility function u(x) = −r e(−x/r). Here we rule out
spite, i.e. we consider the case α = 0. As above, we consider a bidder i with valuation v who
makes a bid b. The opponent, bidder jwith valuation vj, uses a bid function bj = βj(vj). The
expected utility of a risk averse bidder i in the second-price all-pay auction is given by the
following equation:

E(b, v) =
∫β−1

j (b)

0

u(v− βj(vj)) f(vj)dvj︸ ︷︷ ︸
bidder i wins and obtains the prize

and pays the loser’s bid

+

∫ v
β−1
j (b)

u(−b) f(vj)dvj︸ ︷︷ ︸
bidder i loses and pays the own bid

(6)

Rearranging the FOC yields:

β′j(β
−1
j (b)) =

(u(v− b) − u(−b)) f(β−1
j (b))∫v

β−1
j (b)

u(−b)′ f(vj)dvj
=

(
−e

b−v
r + e

b
r

)
r f(β−1

j (b))∫v
β−1
j (b)

e
b
r f(vj)dvj

Assuming symmetry, i.e. β−1
j (b) = v, we get:

β′j(v) =
r · ebr (1− e−v

r ) f(v)

e
b
r (1− F(v))

Hence the equilibrium bid is as follows:

βII-AP
Risk (v) =

∫ v
0

r(1− e
−s
r ) f(s)

(1− F(s))
ds (7)

Figure 2 illustrates the case of uniformly distributed valuations. From Equation (7) we can
conclude the following:

Proposition 1. The equilibrium bid of a risk averse bidder is smaller than the bid of a risk
neutral bidder:

βII-AP
Risk (v) ≤ βII-AP

RNBNE(v)

The proof of Proposition 1 is shown in Appendix A.

21We use CARA and not CRRA since in all-pay auctions bidders may experience negative payo�s. Hence,
CRRA would imply complex utilities, which is di�cult to interpret.
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Figure 2: Equilibrium bids in second-price all-pay auctions for risk averse bidders.
Equilibrium bids in second-price all-pay auctions for di�erent valuations v (left panel) and di�erent levels of
risk r (right panel) with uniform distributions of valuations (see Equation (7)). Increasing r indicates decreasing
risk aversion (for r = ∞ we would have risk neutrality).

3.3. Spite and Risk aversion
As both spite and risk aversion might in�uence bidding behavior we also derive the equilib-
rium bidding function for spiteful bidders who are also risk averse. We again assume that the
risk preferences can be described as constant absolute risk aversion (CARA). As in Section
3.1 we assume that a spiteful loser i experiences a disutility α · (vj − bi) where α describes
the amount of spite. A non-spiteful bidder is characterized by α = 0. Again we assume two
bidders k ∈ {i, j} who are competing for an object which each bidder values with vk ∈ [0, 1].
Valuation are drawn from a distribution with distribution function F(v) and density function
f(v). Both bidders k use bidding functions βk(vk). Both bidders have the same utility func-
tion u(x) = −r e(−x/r). As above, we consider a bidder i with valuation v who makes a bid
b. The opponent, bidder j with valuation vj, uses a bid function bj = βj(vj). The expected
utility of a risk averse and spiteful bidder i in the second-price all-pay auction is given by
the following equation:

E(b, v) =
∫β−1

j (b)

0

u(v− βj(vj)) f(vj)dvj︸ ︷︷ ︸
bidder i wins and obtains the prize

and pays the loser’s bid

+

∫ v
β−1
j (b)

u(−b− α(vj − b)) f(vj)dvj︸ ︷︷ ︸
bidder i loses and pays the own bid
and additionally experiences spite

(8)
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Rearranging the FOC yields:

β′j(β
−1
j (b)) =

(
−e

b−v
r + e

b+α(β−1
j

(b)−b)

r

)
r f(β−1

j (b))

(1− α)
∫v
β−1
j (b)

e
b+α(β−1

j
(b)−b)

r f(vj)dvj

Assuming symmetry, i.e. β−1
j (b) = v, we get:(

−e
b−v
r + e

b+α(v−b)
r

)
r f(v)

(1− α)
∫v
v
e
b+α(v−b)

r f(vj)dvj

As we are unable to solve this equation for the general distribution case we focus on the
uniform distribution (which will be relevant for the experiment), i.e. F(v) = v. For this case
we obtain the following ODE:

β′j(v) = −
α

1− α
·

(
e
αv
r − e

αb−v
r

e
αv
r − e

α
r

)

Hence the equilibrium bid, for the case of uniformly distributed valuations, is as follows:

βII-AP
Risk and Spite(v) =

(α− 1) ln

 r(α−1)
(
e
α
r −1

)− α
α−1α2 ∫

v
0

(
−e
αx
r +e

α
r

)(α−1)−1

(
e
x
r

) dx
(
e
α
r −1

)− α
α−1−r(α−1)



+ α ln
(
e
α
r − e

αv
r

)
 r

(α (α− 1))
(9)

We can also see that Equation 9 results in the same predictions as Equation 7 if α = 0 and
Equation 9 results in the same predictions as Equation 5 if r→ ∞. Figure 3 illustrates the case
of uniformly distributed valuations. Risk aversion again shifts equilibrium bids downwards.
Spite moves equilibrium bids upwards for small and intermediate valuations.

4. Design of the experiment and Hypotheses
To investigate the models presented above, we use a laboratory experiment. In the experi-
ment, we �rst measure preferences for spitefulness and for risk. We will discuss the di�erent
measures of these preferences in Section 4.1. In the next step of the experiment participants
bid in the second-price all-pay auction. We will discuss bidding behavior in Section 4.2. In
Section 4.3 we will discuss the payment of subjects. Section 4.4 depicts the hypotheses for
the experiment.
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Figure 3: Equilibrium bids in second-price all-pay auctions for bidders who are spiteful and
risk averse.

The �gure shows (for uniformly distributed valuations) the di�erence between equilibrium bids for spiteful and
risk averse bidders, b, and equilibrium bids for bidders which are neither spiteful nor risk averse, bII-AP. The
panels depict, each for a given level of risk aversion r, di�erent levels of spite α (see Equation (9)). Increasing
r indicates decreasing risk aversion (r = ∞ means risk neutrality). Increasing α indicates spite.

4.1. Preferences for Spitefulness and Risk
To measure preferences for risk we use a Holt and Laury (2002) task. We will discuss this
measure in Section 4.1.1. We are not aware of a standard task to measure spiteful preferences.
We use, hence, three di�erent measures. One of the measures we use has been proposed by
Marcus et al. (2014). We will discuss this measure in Section 4.1.2. Another measure has been
proposed by Kimbrough and Reiss (2012). We will discuss their measure in Section 4.1.3. We
propose our own measure in Section 4.1.4. Each measure was explained to participants in
great detail using videos.22

4.1.1. Risk according to Holt and Laury (2002)

We measure preferences for risk with the help of a Holt and Laury (2002) task. This measure
uses ten paired lottery choices.23 Each choice compares a risky lottery and a less risky lottery.
The ten choices di�er in the probabilities of the good outcomes of the lotteries. As Holt and
Laury (2002, p.1648) we use the total number of safe choices as a measure of risk aversion.
Participants who choose a large number of the risky options are considered more risk loving.
Participants who choose more of the safer options are considered more risk averse.

There are several alternative tasks to measure risk attitudes (see, for example, Crosetto and

22Appendix D.2 provides the text of the videos. The videos can be found at https://www.kirchkamp.de/
research/SpiteVsRisk.html.

23Lotteries are shown in Table 3 in Appendix B.1. Details of the implementation are illustrated in Appendix
D.1, Second Task (B).

11

https://www.kirchkamp.de/research/SpiteVsRisk.html
https://www.kirchkamp.de/research/SpiteVsRisk.html


Filippin, 2013). The main reasons for using the task developed by Holt and Laury (2002) is
its extensive use in experimental economics. Further, a very recent meta-analysis of behav-
ioral risk measures and risk responses in di�erent contexts shows that the Holt and Laury
(2002) task is signi�cantly correlated with several questionnaires measuring risk preferences
(https://paolocrosetto.shinyapps.io/METARET/).24 Thus, the Holt and Laury (2002)
task is arguably e�ective in measuring risk. Moreover, our measure of risk seems to be e�ec-
tive in predicting bids in our experiment. It is, however, worthwhile to mention that future
studies might want to follow a more agnostic approach upon the measure of risk, as above
for spite. Speci�cally, it might be useful to have multiple measures (like Gneezy and Potters
(1997) and Eckel and Grossman (2008)) of risk.

4.1.2. Spite according to Marcus et al. (2014)

In the questionnaire by Marcus et al. (2014) participants are asked to rate 17 statements. Here
are two examples:25

• If I am checking out at a store and I feel like the person in line behind me is rushing
me, then I will sometimes slow down and take extra time to pay.

• I would rather no one get extra credit in a class if it meant that others would receive
more credit than me.

Participants were asked to indicate their agreement on a scale between 1 and 5. Higher scores
on the scale indicate more spitefulness. The measure of spitefulness with this task is the
average agreement with the statements. The distribution of spitefulness with this measure
is shown in the left part of Figure 4.

4.1.3. Spite according to Kimbrough and Reiss

As a second measure for spitefulness we use a modi�cation of Kimbrough and Reiss (2012).
They observe spiteful behavior with the help of a variant of a second-price auction.26 We
�rst asked participants to supply a bid function for a second price auction with one opponent
(Figure 14 in Appendix B.4). Then valuations for ten independent auctions were generated
randomly. For each of these auctions bids were determined according to the stated bid func-
tions. Participants were informed about the outcome of each auction. Participants were told
who had won the auction and the winner’s bid (Figure 15). In the next (and crucial) step,
participants could decide separately for the won and lost auctions to either keep their own
bid or to increase their own bid. The increase was elicited as the percentage (between 0 and
100%) of the di�erence between the winner’s and the loser’s bid (Figure 16). Bidders could
not increase their own bid by more than 100% of the di�erence between the winner’s and the
loser’s bid. Hence, in this step bidders could never change the winner of the auction. Losing
24In a recent paper Engel and Kirchkamp (2019) also show how to deal with inconsistent choices on multiple

price lists. Currently, such an approach would exceed the scope of the paper but might be a valuable
extension.

25All statements are shown in Appendix B.2.
26See Appendix B.4 for details.
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Figure 4: Distribution of measures for spite.

bidders could only diminish the winner’s payo�. Furthermore, we elicit the willingness to
pay for this adaptation of bids.

Participants who had increased their losing bid are considered spiteful – as they decrease
the payo� of the winners. The spite-measure is a continuous measure between 0% (no ad-
justment) and 100% (if the loser increases the own bid up to the winner’s bid and thus reduces
the winner’s payo� to zero). The distribution of spite for this measure is shown in the middle
of Figure 4.

4.1.4. Our own measure for spitefulness

For our own measure of spitefulness we ask participants to decide six times among 9 possi-
ble allocations similar to the SVO slider measure by Murphy et al. (2011) and Murphy and
Ackerman (2014). Figure 5 shows the six sets we use.27 For each set participants had to chose
their preferred allocation.

In each of the six sets the allocation with the highest payo� for the other player maximizes
the own payo�. Deviations from this allocation only reduce the payo� of the other player.
These deviations never increase the own payo�. A deviation can, hence, be seen as a sign of
spitefulness. This deviation is costless in sets IA1, RG1 and PS1. It is costly in IA2, RG2, and
PS2.

While one reason for these deviations can be spite, other explanations are possible. Devi-
ations in sets IA1 and IA2 can be a sign of “inequality aversion”. Deviations in sets RG1 and
RG2 can be a sign of “concerns for relative gain”.

As a measure for spitefulness we take the sum of points by which the payo� of the other
player is reduced. Anybody who is not spiteful would leave 570 points to the other player.
The lowest possible number of points a spiteful person could leave to the other is 430. This
maximally spiteful person would, hence, reduce the payo� of the other by 140 points. Higher
values indicate, hence, higher spitefulness.

27Details of the allocations are shown in Appendix B.3.
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Figure 5: Own measure of spitefulness.
For each of the six sets players choose one allocation. For each set we consider the Pareto e�cient allocation
not spiteful. Less e�cient allocations will be considered more spiteful.

Based on this measure only 18% of participants were behaving spitefully at all. Only 12%
of participants were willing to pay for their spiteful behavior. A distribution of the combined
spite measure is shown in the right graph in Figure (4).

4.1.5. Other controls

We use the slider measure by Murphy et al. (2011) and Murphy and Ackerman (2014) to
control for social value orientation and inequality aversion. We use the questionnaire of
Back et al. (2013) to control for rivalry.

4.2. Design of the auction
After measuring preferences for spite,28 SVO and risk preferences, participants played the
second-price all-pay auction. We explained to participants in great detail (using videos) the
rules of the auction.29 Participants played the auction for 15 rounds with stranger matching.

Most matching groups (21 groups) had a size of 6 participants.30 We use the strategy
method to elicit bid functions. In each round participants were asked to state a bid for val-
uations of 0, 10, 20,. . . , 90, 100. Figure 6 shows an example of the bidding interface. Bids for
intermediate valuations were linearly interpolated. To give more feedback in each round,
28The implementation of Kimbrough and Reiss (2012) and our all-pay auction were counterbalanced as both

parts are auctions and we want to control for order e�ects here.
29Appendix D.2 provides the text of the videos. The videos can be found at https://www.kirchkamp.de/

research/SpiteVsRisk.html.
30For a few experiments not all participants showed up, hence, we used smaller matching groups in 1 case. In

1 case we used a bigger matching group as unexpectedly few participants showed up.
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Please enter your bid for each potential valuation of the object

Your valuation 0 10 20 30 40 50 60 70 80 90 100
Your bid 0 1 3 5 10 14 18 30 42 65 100

Draw

0 10 20 30 40 50 60 70 80 90 100
0
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40
50
60
70
80
90
100
110
120
130
140
150

Valuation

Bi
d

You are in round 1 out of 15 rounds Ready

Figure 6: Interface of the bidding stage.
Imputing the bidding function for the possible valuations between 0 and 100. The bidding function is drawn
after the input of the respective bids.

each pair of bidders played ten auctions, each time for a random pair of valuations. Figure 7
shows an example of the feedback interface. For each of the ten auctions participants learn
their own valuation, their own bid, and their opponent’s bid. Participants also learn the
outcome of the auction and how much they had won or lost.

4.3. Payment
Participants were paid at the end of the experiment for one random task, i.e. either one lottery
from the risk-measure or one allocation from the SVO slider measure or the Spite-Measure
or the adaptation of Kimbrough and Reiss (2012) or one of the auctions.31,32

For each task we converted ECU (experimental currency unit) to Euros using separate rates
to make sure that for the di�erent tasks average payo�s were similar. For the same reason
participants received a higher initial endowment in the all-pay auction.

4.4. Hypotheses
For the equilibrium bids we observed (Observation 1) that in the second-price all-pay auction
bids increase in spite for low valuations. Bids decrease in spitefulness for high valuations.
Following equilibrium bids, we expect overbidding for valuations between 0 and 90 and un-

31In case of the all-pay auction only one of the 10× 15 auctions was paid out.
32Hence, only one random problem was selected to become payo�-relevant. See Azrieli et al. (2018) for a

detailed argument. See also Charness et al. (2016) for a methodological review.
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Auction 9 7 2 4 1 3 8 10 6 5
Your valuation 20 31 34 40 42 45 58 72 84 100
Your bid 3 6 7 10 11 12 17 32 51 100
Other’s valuation ? ? ? ? ? ? ? ? ? ?
Other’s bid 28 13 4 4 11 13 2 3 1 1
Won/lost lost lost won won won lost won won won won
Points gained/lost -3 -6 30 36 31 -12 56 69 83 99

0 10 20 30 40 50 60 70 80 90 100
0
10
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40
50
60
70
80
90
100
110
120
130
140
150

Your valuation

Bi
d

Your bid

Other bid9 7 2 4 1 3
8

10

6

5

Bids in auctions lost
Bids in auctions won

The other’s valuation is independent of your valuation
You are in round 1 out of 15 rounds Ready

Figure 7: Interface of the feedback stage.
Mapping the 10 random valuations and the respective bids on the bidding function. Additionally subjects could
see the opponent’s bid, whether they won and the amount they won/lost.

derbidding for valuations of 100, as participants are presented with valuations between 0 and
100 in increments of 10.

Hypothesis 1. In the second-price all-pay auction bids increase in spite for low valuations.
Bids decrease in spite for high valuations.

We expect, hence, that bidders with spiteful preferences will bid more than the RNBNE
for small valuations. They will bid less than the RNBNE for large valuations. Following
Proposition 1 we expect that risk averse bidders underbid compared to risk neutral bidders.

Hypothesis 2. In the second-price all-pay auction increased risk aversion leads to lower bids.

5. Results
We conducted the experiments in June 2015 at the laboratory of the school of economics
of the University of Jena (Germany). We recruited 138 participants in 8 sessions using the
online recruiting platform ORSEE (Greiner, 2015). We implemented the experiment using
z-Tree (Fischbacher, 2007). Instructions were presented as 25-minute-videos followed by test
questions for the auction and for the spite-measure based on Kimbrough and Reiss (2012).
The entire experiment lasted for about 100 minutes. Participants earned on average 15.83€
(≈ 9.5 € an hour), which was at that time slightly above the minimum wage. We had 45%
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Figure 8: Joint distribution of measures for spite.

male and 55% female participants with a median age of 24. Participants were on average in
their third year of studies and about 12% were students of business or economics.

5.1. Measures of Spite
Figure 8 shows the joint distribution of the three measures for spite. There is no evident
correlation. For the three instruments we �nd a Cronbach α of 0.118 (CI = [0.0279, 0.212]).
The two behavioral measures are correlated signi�cantly (r = 0.137, p = 0.03300). The
questionnaire is not signi�cantly correlated with the two behavioral measures (r = 0.062,
p = 0.33484; r = 0.058, p = 0.36670). Apparently, the three instruments seem to measure
di�erent aspects of spiteful preferences.

Having said that, we �nd substantial consistency within the two scales which are based on
repeated measurements. For the 17 questions of Marcus et al. (2014) we �nd a Cronbach α
of 0.857 (CI = [0.82, 0.901]). For the six choices from our own measure we �nd a Cronbach
α of 0.707 (CI = [0.64, 0.784]).

Neither the questionnaire nor our own measure seems to be strictly one-dimensional. For
the questionnaire, we �nd that the �rst element of a principal component analysis explains
31.8% of the variance, (CI = [26.3, 36.6]). For our own measure, we �nd that the �rst element
of a principal component analysis explains 76.6% of the variance, (CI = [65.9, 86.7]).

As there is, in general, no easy way to disentangle which of the three spite-measures
is better in measuring spite, we will look at the combined (normalized) measures. As an
additional robustness check we provide the main regressions for each of the three individual
measures in Appendix C.2. Results are very similar for the three measures.

To support the plausibility of the combined (normalized) measure of spite we correlate
it with the SVO slider measure. As SVO measures rather prosocial behavior and our spite
measure is measuring rather antisocial behavior, we expect the two measures to be negatively
correlated. Indeed, this is what we see: the two measures are correlated signi�cantly and
negatively (r = −0.161, p = 0.01162).
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Figure 9: Distribution of Holt and Laury (2002) measure for attitude towards risk.

5.2. Measures of Risk
Figure 9 shows the distribution of the Holt and Laury (2002) measure for risk attitude (see
Table 3 in Appendix B.1). Only 11.48% of all subjects choose the safer (left) lottery four times,
i.e. their behavior is consistent with risk neutrality. Most subjects (83.61%) choose the safer
lottery more than four times, thus behave as if they were risk averse. The remaining 4.92%
choose the safer lottery fewer than four times, i.e. behave as if they were risk loving. These
proportions are very similar to results reported in Holt and Laury (2002).

The measures of risk and spite are supposed to measure di�erent things. Indeed, risk is
neither correlated signi�cantly with our measure of spite (r = 0.001, p = 1.00000), nor is
risk correlated with the SVO-measure (r = 0.001, p = 1.00000).

5.3. Aggregated Bids
In this section we will present an overview of bidding behavior based on aggregated bids. In
Section 5.4 we will continue with a more detailed model to explain individual bids.

Figure 10 shows overbidding, i.e. the di�erence between average bids minus RNBNE bids
in the second-price all-pay auction. For the second-price all-pay auction, spiteful preferences
and risk aversion make quite di�erent predictions. Risk aversion predicts underbidding for all
valuations. Spiteful preferences predict overbidding for intermediate valuations and under-
bidding only for very large valuations. Observed bids (thick line) seem to follow the pattern
predicted by spiteful preferences, and not the one predicted by risk aversion. We �nd over-
bidding up to a rather high valuation and underbidding afterwards. The shape of the bidding
function is, in fact, surprisingly similar to the shape predicted by spiteful preferences. The
di�erence between average bids and the RNBNE is steadily increasing in valuations up to a
valuation of about 60 and decreases steadily in valuations thereafter. For valuations above 80,
we even observe underbidding, which, however, is di�erent from what is predicted by spiteful
preferences, where underbidding would be expected for valuations above 96. Nonetheless,
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Figure 10: Median overbidding: Theory and observations.
The left graph shows median overbidding (b − bII-AP) in the second-price all-pay auction. As a reference we
include theoretical overbidding for spiteful (α > 0) and for risk averse (CARA, r <∞) bidders.

the average bids resemble the shape indicated by spiteful preferences – just compressed to
the left.

We conclude the following:

Result 1. Aggregate behavior in the second-price all-pay auction is better described by a theory
that allows for spite than a theory that allows for risk aversion.

While the �gure suggests that spite might be a relevant explanation for most valuations,
risk aversion is still in line with the observed underbidding for high valuations.33 Also a
combined model presents a reasonable benchmark for the aggregate behavior.

Do preferences for spite and risk explain bids? Let us next check whether the elicited
preferences for spite and risk contribute to an explanation of observed bids on the aggregate
level.

Figure 11 is an extension of the Figure 10. Similar to Figure 10, also Figure 11 shows median
overbidding, i.e. bids minus RNBNE bids. Di�erent from Figure 10, Figure 11 is based on a
median split. We divide participants into more and less spiteful bidders in the left panel.
Similarly, we divide participants into more or less risk averse bidders in the right panel. The
�gure includes equilibrium predictions for di�erent levels of spite in the left panel and for
risk aversion in the right panel.

33In an earlier version of the paper we tried to formally estimate r and α. We did this based on Equation (5)
(assuming spiteful preferences only), Equation (7) (assuming risk aversion only) and Equation 9 (allowing
for risk aversion and spite). However, in all these cases the likelihood function exhibits multiple local
maxima. Estimates should be interpreted with great caution. We have, therefore, decided to cut this part.
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Figure 11: Median overbidding in the second-price all-pay auction.
The left graph shows theoretical overbidding for spiteful bidders as well as median overbidding for above and
below median spiteful experiment-participants. The right graph shows theoretical overbidding for risk averse
bidders (CARA) as well as median overbidding for above and below median risk averse experiment-participants.
Risk of in�nity denotes risk neutrality and decreasing numbers indicate increasing risk aversion.

As predicted by theory, the di�erence between bids of more and less spiteful bidders in-
creases up to a high valuation and decreases quickly afterwards. Also in line with theory the
di�erence between bids of more and less risk averse bidders is negatively increasing in the
valuation.

A formal comparison What we have seen in Figure 11 can be con�rmed more formally.
In Section 5.4 we will look at individual bids. Here, to get a �rst impression, we explain
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Second-price all-pay auction
Spite 3.86∗ (1.68)
Risk −7.44∗ (3.05)
Constant 11.48∗∗∗ (3.04)
Observations 138
Log Likelihood −682.43
Akaike Inf. Crit. 1,374.87
Bayesian Inf. Crit. 1,389.50
Notes: + : p < 0.1; ∗ : p < 0.05; ∗∗ : p < 0.01; ∗∗∗ : p < 0.001;

Table 1: Mixed e�ects model of the average overbidding as a function of spite and risk.
The table shows estimation results of overbidding in both auction types.

average overbidding (per participant) with the help of the following mixed e�ects model:34,35

Bidi,j − bI =β0 + βSpiteSpitei,j + βRiskRiski,j + ηj + εi,j (10)

We call Bidi,j − bI the average overbidding of participant i in group j over all valuations
and all rounds that participant played. Spitei,j is the sum of the three spite measures for
participant i in group j. Riski,j is the risk aversion for this person, and ηj is the group speci�c
random e�ect. Table 1 shows estimation results.

As we have seen in Figure 11 we con�rm for the second-price all-pay auction that spite is
signi�cantly associated with overbidding. Risk aversion signi�cantly associated with under-
bidding. Both observations are in line with theory (Equations (5) and (7)).

Summary of aggregate results Our measure for spite and our measure for risk prefer-
ences explains actual bids in line with the equilibrium prediction. More spiteful bidders bid
34Note, that we basically correlate our measures of risk and spite with bidding behavior. While we are not aware

of any study doing so for the second-price all-pay auction, there are studies correlating measures of risk
and bidding behavior in the �rst-price winner-pay auction. Speci�cally, Füllbrunn et al. (2018) �nd a signif-
icant relationship between measure of risk (elicited through the Bomb Task) and overbidding. Engel (2011)
estimate risk preferences using the task by Holt and Laury (2002) and compare it to risk-preferences ob-
tained from auction behavior. He �nds that risk parameters are stable across tasks. On the other hand, Isaac
and James (2000) and Berg et al. (2005) measure participants’ risk preferences using the Becker-DeGroot-
Marschak (Becker et al., 1964) procedure and �nd no apparent relationship to overbidding in the �rst-price
winner-pay auction.

35Note that we aggregate the results over all valuations in this regression. As the e�ect of spite and risk are
non-linear in valuations, the results obtained below have to be interpreted with caution. Whether or not
more spiteful bidders bid more (and how much so) depends on the valuation. The results here only speak
to the overall level spite and risk have on overbidding. The results might, however, be driven by extreme
results for some of the valuations. Speci�cally, a positive result for spite might be driven by overbidding for
low and intermediate valuations, but a negative result might also be driven by the underbidding for high
valuations. A more sophisticated and especially appropriate model will account for the interaction between
spite/risk and the valuations. We propose such a model in Section 5.4.
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more, as they should. More risk averse bidders bid less, again as they should. Most impor-
tantly, however, we �nd that much of the deviation of bids from RNBNE bids seems to be
due to spiteful preference, not due to risk aversion.

5.4. Individual bids
Let us next turn to individual bids. In Section 5.3 we found a noticeable e�ect of preferences
for risk and spite on aggregate bids. In the current section we will use individual bids to
present a more detailed picture. We will use a mixed e�ects model to estimate individual
overbidding.36 For the second-price all-pay auction overbidding is non-linear in valuations.
Hence, we follow a non-linear approach in the current section. Speci�cally, we use a gen-
eralized additive model (GAM) where overbidding is modeled as a smooth function of the
valuation.37

A second non-linearity that we have to account for is that in equilibrium of the second-
price all-pay auction spite leads to a non-linear increase in bids.38 Risk aversion has a non-
linear e�ect on bids, too.39 For higher levels of spite we expect more overbidding up to a
certain level, but underbidding for high valuations. For higher levels of risk aversion we
expect more underbidding which becomes stronger for high valuations. To simplify the in-
terpretation of our results, we use a piece-wise linear function with a constant slope for
valuations below 50 and a constant slope for valuations above 50.40,41 There are several rea-
sons for using 50 as the cuto� and not a higher number. First, by choosing 50 we remain
rather agnostic about the theoretical predictions and pick the average valuation to observe
whether there is an empirical increase before and a decrease after this cuto�. Second, our
estimates remain rather stable with di�erent cuto�s – speci�cally, the results remain statis-
tically identical for cuto�s 50 till 80. Third, a cuto� of 50 seems empirically reasonable as the
bidding function in Figure 11 seems to increase up to a valuation of about 50 and decrease
afterward. This conjuncture is also supported by model comparisons. More speci�cally, for
the possible cuto�s 50, 60, 70, 80, and 90 we obtain the best model �t (using log likelihood
and AIC) for the cuto� of 50.42

36We are mainly interested in overbidding-behavior. Nevertheless, we estimate bidding behavior in Appendix
C.1.

37We used the default thin plate regression spline. Cubic regression splines, cyclic cubic regression splines,
B-Splines of degree of three, and P-splines (a speci�c version of B-Splines) result in qualitatively the same
outcomes. We also estimate the same regression with the help of piece-wise linear splines. Results are
robust to these speci�cation.

38See Equation (5), Figure 1 for bids and Figure 11 for overbidding.
39See Equation (7), Figure 2 for bids and Figure 11 for overbidding.
40Results are robust to using a cut-o� di�erent from 50.
41Technically: We use a B-spline of degree 1 with one knot at 50. The results are robust to alternatively

modeling the non-linearity by using squared valuations.
42The model with cuto� 50 has a better model �t than a model with cuto� of 60 (χ20 = 2.11), 70 (χ20 = 5.158),

80 (χ20 = 7.401), and 90 (χ20 = 8.917).
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Figure 12: Estimation results for the spline from Equation (11) (overbidding).
The Figure show splines for di�erent models C ′1, C ′2, C ′3, C ′4, and C ′5 and for di�erent (normalized) levels of
spite (in models C ′2, C ′3) and di�erent (normalized) levels of risk (in models C ′4, C ′5).

We compare �ve di�erent models:

Bidi,t,j,v − bII-AP =β0 + β1Period + ζi,j + ηj + εi,j,k,l + C
′
M (11)

C ′1 =s(v)

C ′2 =C
′
1 + β2Spitei + β3Spitei · v[0,50](v) + β4Spitei · v[50,100](v)

C ′3 =C
′
2 + β5IAi + β61Gender=♀ + β7Riski + β8rivalryi + β9SVOi

C ′4 =C
′
1 + β10Riski + β11Riski · v[0,50](v) + β12Riski · v[50,100](v)

C ′5 =C
′
2 + β13IAi + β141Gender=♀ + β15Spitei + β16rivalryi + β17SVOi

Here ζi,j is a random e�ect for bidder i in group j, ηj is a random e�ect for group j, and
εi,j,k,l is the residual. s(v) is the thin plate regression spline over the valuation. To facilitate
interpretation, v[0,50](v) and v[50,100](v) are de�ned as follows:

v[0,50](v) = min(0, v/50− 1) (12)
v[50,100](v) = max(0, v/50− 1) (13)

Coe�cients of interactions of v[0,50] capture, hence, the marginal e�ect of this interaction for
small valuations. Coe�cients of interactions of v[50,100] capture the marginal e�ect of this
interaction for large valuations.43 Estimation results are shown in Table 2. Figure 12 shows
estimation results for the �tted spline s(v) from Equation (11).

In line with Hypothesis 1 we see that, for all models, C ′1, C ′2, C ′3, C ′4, and C ′5, overbidding
�rst increases up to a certain point and then, for high valuations, turns into underbidding.

43The direct e�ect of v is captured by s(v). Hence, the scaling of v doesn’t matter.
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C ′1 C ′2 C ′3 C ′4 C ′5

Period -0.40∗∗∗ (0.05) -0.40∗∗∗ (0.05) -0.40∗∗∗ (0.05) -0.40∗∗∗ (0.05) -0.40∗∗∗ (0.05)
Spite 4.17∗ (1.71) 5.06∗ (1.98) 4.36∗ (1.96)
Spite× v[0,50] 1.52∗∗ (0.48) 1.52∗∗ (0.48)
Spite× v[50,100] -1.07∗ (0.48) -1.07∗ (0.48)
Risk -6.09∗ (2.91) -7.85∗ (3.08) -7.17∗ (2.94)
Risk× v[0,50] -3.48∗∗∗ (0.86) -3.48∗∗∗ (0.86)
Risk× v[50,100] 0.46 (0.86) 0.46 (0.86)
Male -19.14∗∗ (6.09) -19.14∗∗ (6.09)
Rivalry -1.03 (3.07) -1.03 (3.07)
SVO 0.40+ (0.24) 0.40+ (0.24)
IA -1.97 (2.50) -1.97 (2.50)
Constant 14.92∗∗∗ (3.15) 14.89∗∗∗ (3.11) 15.09∗ (6.48) 14.87∗∗∗ (3.10) 15.09∗ (6.48)
Observations 23760 23760 23760 23760 23760
Log Likelihood -120506.69 -120499.44 -120490.09 -120493.49 -120484.48
Akaike Inf. Crit 241027.38 241018.88 241010.17 241006.97 240998.96
Bayesian Inf. Crit. 241083.91 241099.64 241131.31 241087.73 241120.1
Notes: + : p < 0.1; ∗ : p < 0.05; ∗∗ : p < 0.01; ∗∗∗ : p < 0.001;

Table 2: Estimation results for Equation (11) (overbidding in the second-price all-pay auc-
tion).

The table shows estimation results for the di�erent modelsC ′1,C ′2,C ′3,C ′4, andC ′5. Thin plate regression splines
are used for s(v). Spite is the sum of the three spite measures. (We show individual estimates for the interaction
e�ects for the three measures in Figure 17 and in Section C.2). IA is the sum of the inequality aversion score
obtained from the slider measure and the score obtained from inequality allocation of our own spite measure.
Standard errors are shown in parentheses. 23760 observations refer to 18 participants of the �rst session of the
experiment playing 20 rounds plus 120 participants of all remaining sessions playing 15 rounds. In each round
11 decisions were made.

Result 2. In line with spiteful preferences, bidders in the second-price all-pay auction bid more
than the RNBNE for small valuations and bid less for large valuations.

Hypothesis 1 can be assessed with the help of models C ′2 and C ′3. Indeed, with increasing
spite overbidding increases more strongly for v < 50 and then decreases for v > 50, in line
with the hypothesis. Speci�cally, we can see from β3 that increasing spite leads to more
overbidding for low valuations, while the negative estimate of β4 indicates that increasing
spite leads to more underbidding for high valuations.44

Result 3. Bids increase in spite for low valuations. Bids decrease for high valuations.

Hypothesis 2 can be assessed with the help of models C ′4 and C ′5: For small valuations
(v < 50) the interaction of risk aversion and v is clearly negative. Underbidding is increasing
in valuation and in risk aversion. This is in line with Hypothesis 2. For larger valuations
44In Figure 13 we show the development of this interaction over time. We �nd that the e�ect becomes stronger

during the experiment. In Figure 17 we show separate estimation results for the three di�erent measures of
spite. For all measures we �nd that the interaction between spite and v is positive for v < 50 and negative
for v > 50. Detailed estimation results, similar to Table 2, but for the di�erent measures of spite, are shown
in Section C.2.
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(v > 50) our data neither supports not contradicts Hypothesis 2. The interaction e�ect is
small and not signi�cant.

Result 4. For small valuations increased risk aversion is associated with lower bids in the
second-price all-pay auction.

The right part of Figure 13 shows how the interaction terms change over time during the
experiment. We �nd that the above mentioned e�ects become stronger during the experi-
ment.

In columns C ′3 and C ′5 in Table 2 we add controls for gender, rivalry, social value orienta-
tion, and inequality aversion. Adding these controls does not change substantially the coef-
�cients for spite and risk. Our estimations from Equation (11) show that gender is a highly
signi�cant factor of overbidding. Further, we see that overbidding decreases over time. How-
ever, we also see that prosocial preferences are not clearly related to bidding behavior. In-
equality aversion is negatively associated with overbidding (but not signi�cantly so) and our
measure of social value orientation is positively associated with overbidding (which is sig-
ni�cant only on the 10% level). Our signi�cant and positive constant on overbidding (which
controls already for the functional form due to the valuation) might be interpreted as a sign
of joy of winning.

All in all, estimation results for Equation (11) suggest that the theory of spiteful bidding
performs rather well in the second-price all-pay auction. As expected, more spitefulness is
related to more overbidding for small valuations and to more underbidding for large valu-
ations. We also �nd some support for the theory of risk averse bidders: At least for small
valuations more risk aversion is related to more underbidding. Overall behavior is more in
line with spiteful bidding than with risk aversion.

6. Discussion and Conclusion
In this paper we want to contribute – with the help of theory and experiments – to a better
understanding of bidding behavior in auctions. We propose that spite could be a relevant
factor to explain bids. As a workhorse we use the second-price all-pay auction.

We show that, in equilibrium, spite and risk should have an in�uence on bids in the second-
price all-pay auction. Speci�cally, spite leads to overbidding and risk aversion leads to un-
derbidding.

For the participants in our experiment we use three di�erent measures of spiteful prefer-
ences: a questionnaire, an allocation task and an experimental design similar to Kimbrough
and Reiss (2012). We use a Holt and Laury (2002) task to measure preferences for risk.

Our measures of spiteful preferences and risk aversion predict bidding behavior quite well.
In line with theory, bidders who are more spiteful make higher bids. Bidders who are more
risk averse make lower bids. This e�ect of spite and risk seems to increase during the exper-
iment. Most importantly, in the second-price all-pay auction the overall e�ect of spite seems
to dominate the e�ect of risk.

To summarize, spite seems to be a very appealing explanation for bidding behavior in some
situations, e.g. the second-price all-pay auction.

25



Second-price all-pay auction, Eq. (11)
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Figure 13: Estimation of interaction coe�cients from Equation (11) over time
To show the change of behavior during the experiment we estimate Equation (11) separately for each period.
The vertical axis shows the interaction of Spite and Risk with v for models C ′2 and C ′4, respectively.

Overall, we aim to make three contributions to the current literature: 1) We extend the
theoretical model of spiteful and risk averse behavior to second-price all-pay auctions, 2) we
relate a measure of spite to observed bidding behavior and most importantly 3) we compare
two alternative explanations for overbidding – risk vs. spite – and show that in some auctions
– the second-price all-pay auction – spite can explain behavior better than risk aversion.

Theoretical investigations (such as Morgan et al., 2003) have suggested that spite con-
tributes to behavior in auctions. The implication of our results is that empirically spite could
be a relevant factor at least in some institutions, e.g. the second-price all-pay auction.

Obviously, our paper has some limitations: In our benchmark, we consider symmetric equi-
libria only. However, the second-price all-pay auction has asymmetric equilibria, too – for
example a bully-sucker-equilibrium (Levin and Kagel, 2005), where the bully bids the maxi-
mum and the sucker knuckles under and bids zero.

Further possible extensions of our work could focus on the model of spite. In this paper
we have assumed that only the loser of an auction is spiteful. Furthermore, we have treated
spite only as a constant, independent of valuation and bid and identical for all members
of the population. All these assumptions are taken from the current literature on spite in
auctions (Bartling et al., 2017; Morgan et al., 2003; Brandt et al., 2007; Sandholm and Tang,
2012; Sandholm and Sharma, 2010; Mill, 2017). These assumptions simplify the theoretical
approach. Further theoretical work, however, might relax these assumptions.

Future research can also focus on comparing spite against possible alternative explanations
of overbidding (like joy-of winning, anticipated regret, etc.). The main reason for choosing
risk aversion as the main comparison to spite was to pick the strongest competitor. Risk
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aversion seems to be the most common and accepted explanation for overbidding in most
formats. We wanted to provide evidence that spite is more than just a possible rationalization
of observed behavior among many. We wanted to show that, at least in some competitive
situations, spite does better than risk aversion. However, common other explanations, such
as the joy-of-winning, might be useful targets of future research. Especially, joy-of-winning
presents an interesting explanation as it has been shown to be important before, it is rela-
tively easy to measure, and it makes rather straightforward predictions.

As mentioned earlier, there is overwhelming evidence for deviations from risk neutral
Bayesian Nash equilibria (RNBNE) for several auction formats. In this paper we have ex-
plored the second-price all-pay auction. We have chosen this format, because the deviation
from RNBNE is substantial. This deviation can help us to distinguish motives like spiteful-
ness and risk aversion. For other auction formats bids are closer to RNBNE. For example,
Kagel et al. (1987) �nd no overbidding for the English auction with a�liated valuations. Such
a situation is, of course, less suitable to distinguish risk and spite.

We have also seen that the concept of spite seems to be hard to grasp. The correlation
of our three measures for spite is positive. However, the correlation is not huge. Also our
approach, to simply sum up the normalized values of each measure, is pragmatic. However,
multiple measures of personality characteristics are often not perfectly correlated. For risk
preferences, for example, Holzmeister and Stefan (2020) �nd that subjects’ revealed prefer-
ences are stable only in fewer than 50% of pairwise comparisons of four measures of risk
preferences. While these risk measures at least refer to a single concept, our measures con-
sider di�erent aspects of spite. A less than perfect correlation of our measures should, hence,
be no surprise. Nevertheless, no matter which of our individual measures of spite we use, we
obtain very similar results. We interpret the consistency of our results to di�erent measures
of spite as an indicator of robustness.

In this paper, we have also used only one measure of risk. However, the Holt and Laury
(2002) task has gone out of favor for experiments in recent years, and more importantly, re-
cent evidence suggests that risk preference elicitation seems to vary considerably depending
on the method (Holzmeister and Stefan, 2020). Thus, future studies might want to follow a
more agnostic approach upon the measure of risk and use multiple measures.

Further, this paper shows that our measure of spite correlates with the bidding behavior in
the second-price all-pay auction, as predicted by the corresponding equilibria. However, we
do not show causal evidence. Even though we are the �rst to link measured spite and bidding
empirically, we did not manipulate the spitefulness of our subjects in the experiment. This
gives room to omitted variable bias. We tackle this issue by controlling for demographic and
additional personality characteristics in the regression. Further, the shape of the actual bid-
ding behavior and the equilibrium predictions are very similar. This similarity should reduce
the risk of an omitted variable bias. We are also not aware of any research manipulating the
spitefulness of subjects.45 It is also noteworthy that the main result of this paper – i.e. the
average bidding behavior in the second-price all-pay auction is much more in line with the

45An exception is a recent attempt by Mill and Morgan (2019) who try to manipulate spite by assigning subjects
to either ingroup or outgroup opponents in an auction. Their results support the view that spite might play
a role in bidding behavior.
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equilibrium predictions of spiteful bidders than risk averse bidders – is independent of our
measure of spite.

Despite these limitations we can, nevertheless, conclude that spite is a relevant and im-
portant motive in auctions. In particular, our results seem to suggest that the spite motive
could be as relevant and important as risk aversion in some competitive situations.
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Appendix – for online publication

A. Bids in the second-price all-pay auction
Proof that an increasing bidding function exists: In Section 3.1 we assume the bid function to
be monotonically increasing. We have still to check that our solution satis�es this assumption.

dbII-AP
Spite

dv
=

1+ α

1− α
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Proof of Proposition 1:

βII-AP
Risk (0) = 0

βII-AP
RNBNE(0) = 0

Let us prove by contradiction. We know that risk averse and risk neutral bidders start at the same
point. We assume for now that risk averse bidders have a higher slope compared to risk neutral
bidders:
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We can show that L(m) is decreasing (∂L(m)
m = −mem) in m and as L(0) = 0 we obtain a contra-

diction as em(1−m) − 1 ≤ 0 ∀m ∈ R+. �

A.1. Expected payo� with spite
To investigate whether it would be ex-ante individually rational for a bidder in our auction to
participate in the auction we derive the expected utility for our bidders. The expected utility
for a spiteful bidder is given by the following:
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E(b∗, v) =
∫ v
0

u(v− b∗(vj)) f(vj)dvj︸ ︷︷ ︸
bidder i wins and obtains the prize

and pays the loser’s bid

+

∫ 1
v

u(−b∗ − α(vj − b
∗)) f(vj)dvj︸ ︷︷ ︸

bidder i loses and pays the own bid
and additionally experiences spite

where b∗ is given by Equation (4). For simplicity, we assume a uniform distribution as
participants of our experiment were given this distribution function. Thus, the expected
utility of a risk neutral spiteful bidder is given by:
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It is obviously evident that a bidder without spite would always have a positive utility.
A spiteful bidder, however, might obtain a negative utility if the own valuation is relatively
small (as the negative utility of the opponent winning kicks in). To see whether a bidder
would choose to enter the auction if the bidder would have the option – which was not
the case in our experiment, as all bidders had to take part – we look at the ex-ante utility.
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Therefore, we study the expected utility over all possible valuations:

EEx−ante(b∗, v) =
∫ 1
0

E(b∗, v)dv

=

∫ 1
0
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2
−
α

2
dv =

1

6
−
α

2

We can easily see that a bidder with spite factor α < 1
3

would decide to enter the auction.
All bidders more spiteful than that would prefer not to enter the auction.

B. Measuring preferences for risk and spitefulness

B.1. Risk preferences
The lotteries for the Holt and Laury (2002) task are shown in Table 3. Details of the imple-
mentation are illustrated in Appendix D.1, Second Task (B).

B.2. Spitefulness – Marcus et al. (2014)
The measure of Marcus et al. (2014) is based on a rating of 17 statements. Participants are
asked to indicate their agreement on a scale between 1 and 5. Higher scores on the scale
indicate more spitefulness. Marcus et al. (2014) propose to use the average of the stated
agreements as a measure for spitefulness.

• I would be willing to take a punch if
it meant that someone I did not like
would receive two punches.

• I would be willing to pay more for some
goods and services if other people I did
not like had to pay even more.

• If I was one of the last students in a
classroom taking an exam and I noticed
that the instructor looked impatient, I
would be sure to take my time �nish-
ing the exam just to irritate him or her.

• If my neighbor complained about the
appearance of my front yard, I would
be tempted to make it look worse just
to annoy him or her.

• It might be worth risking my reputa-
tion in order to spread gossip about

someone I did not like.

• If I am going to my car in a crowded
parking lot and it appears that another
driver wants my parking space, then I
will make sure to take my time pulling
out of the parking space.

• I hope that elected o�cials are success-
ful in their e�orts to improve my com-
munity even if I opposed their election.
(reverse scored)

• If my neighbor complained that I was
playing my music too loud, then I
might turn up the music even louder
just to irritate him or her, even if meant
I could get �ned.

• I would be happy receiving extra credit
in a class even if other students re-
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ceived more points than me. (reverse
scored)

• Part of me enjoys seeing the people I do
not like fail even if their failure hurts
me in some way.

• If I am checking out at a store and I
feel like the person in line behind me is
rushing me, then I will sometimes slow
down and take extra time to pay.

• It is sometimes worth a little su�ering
on my part to see others receive the
punishment they deserve.

• I would take on extra work at my job
if it meant that one of my co-workers
who I did not like would also have to
do extra work.

• If I had the opportunity, then I would
gladly pay a small sum of money to see
a classmate who I do not like fail his or
her �nal exam.

• There have been times when I was will-
ing to su�er some small harm so that
I could punish someone else who de-
served it.

• I would rather no one get extra credit
in a class if it meant that others would
receive more credit than me.

• If I opposed the election of an o�cial,
then I would be glad to see him or her
fail even if their failure hurt my com-
munity.

B.3. Spitefulness – Own Measure
Our own spite measure is assessing spite similar to the social value orientation task of Mur-
phy et al. (2011) and Murphy and Ackerman (2014). In their slider task participants are pre-
sented with 6 (or 15, if inequality aversion is also measured) sets of allocations. Each set
contains 9 allocations. Each allocation determines the own payo� and the payo� of the other
participant. Participants have to choose a preferred allocation for each set.

Similarly, our spite measure uses six sets of allocations. As in Murphy et al. (2011) and
Murphy and Ackerman (2014), each set contains 9 allocations. An overview of the six sets is
shown in Figure 5.

The leftmost allocation is always the non-spiteful allocation and the rightmost allocation
is always the maximally spiteful allocation. In the experiment each set was shown on a
separate screen. Two sets were presented in reverse order.

Each of the six tasks is supposed to measure one feature of spite. The sets IA1 and IA2 are
measuring spite when it is behaviorally in line with inequality aversion. A decision maker
with positive concerns for social e�ciency would choose the allocation with the highest
payo� for the other player since this choice also maximizes the own payo�. A spiteful person
but also an inequality averse person would choose possibly a di�erent allocation. In IA1
being spiteful has no cost. Decision makers get 70 ECU for sure and can basically reduce the
payo� of the opponent. In IA2 spitefulness has a cost. In both IA1 and IA2 it may be that the
motivation of the decision maker of not maximizing the payo� of the other player could be
to either harm the other (spite) or to decrease the overall inequality.

RG1 and RG2 are measuring spite when spite is behaviorally in line with relative gain.
Again, a decision maker with positive concerns for social e�ciency would choose the allo-
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Please enter your bid for each potential valuation of the object

Your valuation 500 550 600 650 700 750 800 850 900 950 1000
Your bid 0 10 20 40 80 160 320 500 700 900 1000

Draw

500 550 600 650 700 750 800 850 900 950 1000
0

100
200
300
400
500
600
700
800
900
1000
1100
1200
1300
1400
1500

Valuation

Bi
d

Ready

Figure 14: Interface of the Kimbrough and Reiss (2012)-spite measure.
Imputing the bidding function for the possible valuations between 500 and 1000. The bidding function is drawn
after the input of the respective bids.

cation with the highest payo� for the other player since this choice also maximizes the own
payo�. In RG1 a person who deviates from this choice is considered spiteful as this person
decreases the payo� of the opponent. However, this behavior would also be in line with the
behavior of a bidder who wants to have relatively better payo� compared to the opponent
(which is often considered spite). RG2 is a variant of RG1 where the spiteful choice is costly.

In PS1 and PS2 the e�cient outcome implies already a positive relative standing of the
decision maker who can only decrease the payo� of the other player. We take the last two
sets as extreme spite. PS2 is a variant of PS1 where the spiteful choice is costly.

The allocation of the overall spite in this measure can be seen in Figure 4 (on the right).
The decisions of the individual set can be seen in Table 4.

B.4. Spitefulness – Kimbrough and Reiss (2012)
In the original paper by Kimbrough and Reiss (2012) participants were matched into groups
of three and played 16 rounds of a second-price winner-pay auction. Participants would bid
for an object for which they had an individual induced value v ∼ U[500, 1000]. After the
auction participants did a real e�ort task. Thereafter, participants learned whether they had
won or lost the auction. In a next (and crucial) step, participants could increase their bid
from the earlier auction. They also had a possibility to buy the object they were competing
for at a random price p ∼ U[300, 500] if they lost.

We change some aspects of Kimbrough and Reiss (2012)’s design. We excluded the outside
option. We also excluded the real e�ort task. We also use the strategy method to elicit one bid
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Auction 9 10 6 5 7 2 4 8 1 3
Your valuation 511 532 538 570 607 653 747 836 867 913
Your bid 2 6 8 14 23 42 155 414 568 752
Other’s valuation ? ? ? ? ? ? ? ? ? ?
Other’s bid 715 smaller 942 916 48 smaller smaller smaller smaller smaller
Won/lost lost won lost lost lost won won won won won

500 550 600 650 700 750 800 850 900 950 1000
0

100
200
300
400
500
600
700
800
900
1000
1100
1200
1300
1400
1500

Your valuation

Bi
d

Your bid

Other’s bid
when he wins

9 106 5 7 2

4

8

1

3

Bids in auctions lost
Bids in auctions won

The other’s valuation is independent of your valuation
Ready

Figure 15: Interface of the feedback of each auction.
Mapping the 10 random valuations and the respective bids on the bidding function. Additionally subjects could
see the opponent’s bid (if the opponent won) and whether they won or lost.

Please choose an adjustment for your winning and losing bids. Then click “Ready”.
You are the highest bidder for these auctions.

By how many percent do you increase your bid
for the auctions where you are the highest bidder?

0% 100%
26%

Note: You pay the bid of the other bidder.

You have lost these auctions.
By how many percent do you increase your bid

relative to the bid of the other bidder,
for the auctions you have lost?

0% 100%
38%

Note: The other bidder pays your bid.

Bi
d

10 2 4 8 1 3 9 6 5 7
0

100
200
300
400
500
600
700
800
900
1000
1100
1200
1300
1400
1500

Round

Your bids so far
(lost)

Your bids so far
(won)

Bids of the other
if he wins

Your new bids

Won Lost

Round 10 2 4 8 1 3 9 6 5 7
Your valuation 532 653 747 836 867 913 511 538 570 607

Bid (so far) 6 42 155 444 568 752 2 8 14 23
Bid (new) 8 53 196 560 716 948 273 363 357 32 Ready

Figure 16: Interface of the bid adaptation.
To reduce the demand e�ect participants were allowed to increase their losing but also the winning bid. Auc-
tions were ordered so that participants made decisions for auctions they had won in the left part of the screen
and for auctions they had lost in the right part.
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function for all auctions. Furthermore, we measure the willingness to pay for the adaptation
of the bid. All in all, our measure consists of the following four stages:

Stage 1 Participants (I{1,2}) submit an initial bid function (BI{1,2}(v)). Here we use the strat-
egy method (see Figure 14). We present participants with the possible valuations be-
tween 500 and 1000 in steps of 50. They were asked to indicate their bid for each
valuation .

Stage 2 10 random valuations with v ∼ U[500, 1000] were drawn for each participant. For
each participant we use their bid function to determine the bid for each valuation. Each
valuation and bid of each pair represents one auction. Participants were then informed
about the highest bid and the winner in each of the 10 auctions (see Figure 15).

Stage 3 Participants were asked separately for the auctions they had lost and for the auc-
tions they had won by how much they wanted to increase their bids. They could in-
crease their bids by any percentage between 0 and 100% of the di�erence between
winning and losing bid. Hence, the outcome of the auction could not be a�ected by
the �nal bids. In any case, the initial bids still determined who had won which auction.
The �nal bids only determined how much the winner needed to pay. The interface is
shown in Figure 16.46

Stage 4 We essentially use a second-price winner-pay auction to elicit the individual will-
ingness to pay for the adjustment from Stage 3. Participants were randomly matched
into pairs with a new partner. They were asked to state how much they were willing
to pay for their �nal bid to be implemented. For each pair the �nal bids of the person
who stated a higher willingness to pay were implemented. That participants had to
pay the willingness to pay of their partner from stage 4. Since we use a second-price
winner-pay auction it is a dominant strategy for participants to reveal the true will-
ingness to pay for the adjustment of bids. Here, we do not use this data as this stage is
arguable rather complicated for subjects to grasp.

C. Further regressions

C.1. Estimating bidding behavior in the second-price all-pay auction
In the main part of the paper we estimated the overbidding behavior for the second-price all-
pay auction. In this subsection we will estimate the bidding behavior directly. To estimate
the bidding behavior we will use a mixed-e�ects model, as spite, risk, social value orientation
(SVO) etc. are �xed e�ects but the individuals and the matching-group are random e�ects.
In line with overbidding, we expect increased spite will be associated with higher bids for
46An indicator that there may be a demand e�ect is that 41% of the participants increased their bid also in the

winning case. Of course, di�erent from an increase of bids for the losers, an increase of bids for the winners
has simply no e�ect for any bidder. This choice was only introduced to keep the interface consistent. No
matter how much the winning bid is increased in the second price auction, winners still remain winners
and pay (in a second price auction) the losers’ bids.
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intermediate valuations. We compare �ve di�erent models which di�er only in the controls
C1, . . . , C5.

Bidi,t,j,v =β0 + β1Period + β2v[0,50] + β3v[50,100] + ζi,j + ηj + εi,j,k,l + CM (14)
C1 =0

C2 =β4Spitei + β5Spitei × v[0,50] + β6Spitei × v[50,100]
C3 =C2 + β71Gender=♀ + β8Riski + β9rivalryi + β10SVOi + β11IAi

C4 =β12Riski + β13Riski × v[0,50] + β14Riski × v[50,100]
C5 =C4 + β151Gender=♀ + β16Spitei + β17rivalryi + β18SVOi + β19IAi

where ζi,j is a random e�ect for bidder i in group j, ηj is a random e�ect for group j, and
εi,j,k,l is the residual. v[0,50](v) and v[50,100](v) are de�ned in Equation (12) and (13) above.

C1 C2 C3 C4 C5

Period −0.40∗∗∗ (0.05) −0.40∗∗∗ (0.05) −0.40∗∗∗ (0.05) −0.40∗∗∗ (0.05) −0.40∗∗∗ (0.05)
v[0,50] 30.63∗∗∗ (0.86) 30.63∗∗∗ (0.86) 30.63∗∗∗ (0.86) 42.82∗∗∗ (3.14) 42.82∗∗∗ (3.14)
v[50,100] 33.79∗∗∗ (0.86) 33.79∗∗∗ (0.86) 33.79∗∗∗ (0.86) 32.17∗∗∗ (3.14) 32.17∗∗∗ (3.14)
Spite 4.17∗ (1.72) 4.93∗ (1.92) 4.22∗ (1.91)
Spite× v[0,50] 1.52∗∗ (0.48) 1.52∗∗ (0.48)
Spite× v[50,100] −1.07∗ (0.48) −1.07∗ (0.48)
Risk −3.44∗ (1.70) −4.49∗ (1.78) −4.06∗ (1.72)
Risk× v[0,50] −1.99∗∗∗ (0.49) −1.99∗∗∗ (0.49)
Risk× v[50,100] 0.27 (0.49) 0.27 (0.49)
Male −19.13∗∗ (6.23) −19.13∗∗ (6.23)
Rivalry −0.97 (3.35) −0.97 (3.35)
SVO 0.39 (0.25) 0.39 (0.25)
IA −0.16 (0.20) −0.16 (0.20)
Constant 58.79∗∗∗ (3.19) 58.76∗∗∗ (3.16) 98.64∗∗∗ (27.25) 86.20∗∗∗ (11.29) 102.41∗∗∗ (27.29)
Observations 23,760 23,760 23,760 23,760 23,760
Log Likelihood −120,475.50 −120,466.70 −120,452.40 −120,460.60 −120,446.70
Akaike Inf. Crit. 240,965.00 240,953.40 240,934.80 240,941.20 240,923.40
Bayesian Inf. Crit. 241,021.50 241,034.10 241,055.90 241,022.00 241,044.60
Notes: + : p < 0.1; ∗ : p < 0.05; ∗∗ : p < 0.01; ∗∗∗ : p < 0.001;

Table 5: Estimation of Equation (14).
Spite is the sum of the three (normalized) spite measures. IA is the sum of the (normalized) inequality aversion
score obtained from the slider measure and the (normalized) score obtained from inequality allocation of our
own spite measure.

Estimation results are shown in Table 5. It can be seen that spite has a signi�cant pos-
itive e�ect on the bidding behavior for small valuations. This is in line with theory: with
increasing spite one would �nd more overbidding for small valuations. For high valuations
(v ∈ [50, 100]) spite has a negative and signi�cant e�ect.
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Concerning risk, we can see that increasing risk aversion has the predicted e�ect for small
valuations. This is also in line with theory on risk averse bidding. For large valuations the
interaction of Risk and v[50,100] is small and not signi�cant.

Obviously valuations also have a signi�cant and positive e�ect on bids. Furthermore,
female bidders bid signi�cantly more than men. The decrease in bidding over the rounds
could be interpreted as a learning e�ect of overbidding.

Result 5. Spite has a signi�cant positive e�ect on bids for intermediate valuations in the second-
price all-pay auction.

Result 6. Risk has a signi�cant negative e�ect on bids in the second-price all-pay auction.

C.2. Estimating Equation (11) with the individual spite measures
Table 6, 7 and 8 show the estimation results for Equation (11) using the three spite measures
separately. The estimations are mainly in line with the results of the normalized combined
spite-measure.

C ′1 C ′2 C ′3 C ′4 C ′5

Period -0.40∗∗∗ (0.05) -0.40∗∗∗ (0.05) -0.40∗∗∗ (0.05) -0.40∗∗∗ (0.05) -0.40∗∗∗ (0.05)
Spite 0.12 (0.08) 0.10 (0.08) 0.08 (0.08)
Spite× v[0,50] 0.05∗ (0.02) 0.05∗ (0.02)
Spite× v[50,100] -0.03 (0.02) -0.03 (0.02)
Risk -3.19+ (1.68) -4.59∗∗ (1.76) -3.91∗ (1.70)
Risk× v[0,50] -2.18∗∗∗ (0.49) -2.18∗∗∗ (0.49)
Risk× v[50,100] 0.46 (0.49) 0.46 (0.49)
Male -18.66∗∗ (6.17) -18.66∗∗ (6.17)
Rivalry 1.09 (3.16) 1.09 (3.16)
SVO 0.43+ (0.25) 0.43+ (0.25)
IA 0.01 (0.18) 0.01 (0.18)
Constant 14.92∗∗∗ (3.15) 12.02∗∗ (3.95) 27.82 (23.81) 38.56∗∗∗ (11.11) 27.82 (23.82)
Observations 23760 23760 23760 23760 23760
Log Likelihood -120506.69 -120503.35 -120494.62 -120492.17 -120485.14
Akaike Inf. Crit 241027.38 241026.69 241019.24 241004.34 241000.28
Bayesian Inf. Crit. 241083.91 241107.45 241140.38 241085.1 241121.41
Notes: + : p < 0.1; ∗ : p < 0.05; ∗∗ : p < 0.01; ∗∗∗ : p < 0.001;

Table 6: Estimation results for Equation (11) (overbidding) (Kimbrough-Reiss).
The table shows estimation results for the di�erent modelsC ′1,C ′2,C ′3,C ′4, andC ′5. Thin plate regression splines
are used. Spite is the Kimbrough-Reiss spite measure. IA is the sum of the inequality aversion score obtained
from the slider measure and the score obtained from inequality allocation of our own spite measure.

42



C ′1 C ′2 C ′3 C ′4 C ′5

Period -0.40∗∗∗ (0.05) -0.40∗∗∗ (0.05) -0.40∗∗∗ (0.05) -0.40∗∗∗ (0.05) -0.40∗∗∗ (0.05)
Spite 0.43+ (0.23) 0.33 (0.26) 0.26 (0.26)
Spite× v[0,50] 0.17∗∗ (0.06) 0.17∗∗ (0.06)
Spite× v[50,100] -0.07 (0.06) -0.07 (0.06)
Risk -3.00+ (1.68) -4.59∗∗ (1.76) -3.72∗ (1.69)
Risk× v[0,50] -2.18∗∗∗ (0.49) -2.18∗∗∗ (0.49)
Risk× v[50,100] 0.46 (0.49) 0.46 (0.49)
Male -18.51∗∗ (6.19) -18.51∗∗ (6.19)
Rivalry 1.68 (3.16) 1.68 (3.16)
SVO 0.41+ (0.25) 0.41+ (0.25)
IA -0.08 (0.21) -0.08 (0.21)
Constant 14.92∗∗∗ (3.15) 13.02∗∗∗ (3.33) 35.81 (25.54) 38.56∗∗∗ (11.11) 35.81 (25.54)
Observations 23760 23760 23760 23760 23760
Log Likelihood -120506.69 -120501.3 -120493.21 -120492.17 -120485.15
Akaike Inf. Crit 241027.38 241022.61 241016.43 241004.34 241000.31
Bayesian Inf. Crit. 241083.91 241103.36 241137.57 241085.1 241121.45
Notes: + : p < 0.1; ∗ : p < 0.05; ∗∗ : p < 0.01; ∗∗∗ : p < 0.001;

Table 7: Estimation results for Equation (11) (overbidding) (Own measure).
The table shows estimation results for the di�erent modelsC ′1,C ′2,C ′3,C ′4, andC ′5. Thin plate regression splines
are used. Spite is the own spite measure. IA is the sum of the inequality aversion score obtained from the slider
measure and the score obtained from inequality allocation of our own spite measure.

C ′1 C ′2 C ′3 C ′4 C ′5

Period -0.40∗∗∗ (0.05) -0.40∗∗∗ (0.05) -0.40∗∗∗ (0.05) -0.40∗∗∗ (0.05) -0.40∗∗∗ (0.05)
Spite 5.26 (5.65) 13.05∗ (6.32) 12.45∗ (6.28)
Spite× v[0,50] 0.30 (1.55) 0.30 (1.55)
Spite× v[50,100] -1.90 (1.55) -1.90 (1.55)
Risk -3.52∗ (1.67) -4.59∗∗ (1.76) -4.24∗ (1.69)
Risk× v[0,50] -2.18∗∗∗ (0.49) -2.18∗∗∗ (0.49)
Risk× v[50,100] 0.46 (0.49) 0.46 (0.49)
Male -21.35∗∗∗ (6.20) -21.35∗∗∗ (6.20)
Rivalry -2.37 (3.64) -2.37 (3.64)
SVO 0.44+ (0.24) 0.44+ (0.24)
IA -0.01 (0.17) -0.01 (0.17)
Constant 14.92∗∗∗ (3.15) 7.20 (9.79) 23.02 (23.59) 38.56∗∗∗ (11.11) 23.02 (23.59)
Observations 23760 23760 23760 23760 23760
Log Likelihood -120506.69 -120505.38 -120494.87 -120492.17 -120483.73
Akaike Inf. Crit 241027.38 241030.76 241019.74 241004.34 240997.45
Bayesian Inf. Crit. 241083.91 241111.52 241140.88 241085.1 241118.59
Notes: + : p < 0.1; ∗ : p < 0.05; ∗∗ : p < 0.01; ∗∗∗ : p < 0.001;

Table 8: Estimation results for Equation (11) (overbidding) (Spite-Score).
The table shows estimation results for the di�erent modelsC ′1,C ′2,C ′3,C ′4, andC ′5. Thin plate regression splines
are used. Spite is the score from the spite questionnaire (Marcus et al., 2014). IA is the sum of the inequality
aversion score obtained from the slider measure and the score obtained from inequality allocation of our own
spite measure.
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Figure 17: Estimation of Equations (11) for di�erent measures of spite.
To show the e�ect of di�erent measures of spite we estimate Equations (11) with interactions for the three
di�erent measures at the same time. The vertical axis shows the interaction of Spite with v for models C ′2 and
C ′4, respectively. Detail estimation results for the second-price all-pay auction are shown in Section C.2.

D. Instructions
The experiment was conducted in German. All participants obtained the following handout
(translated into English). Participants also saw video instructions, which are available upon
request. The video instruction put into writing and translated into English can be found in
Appendix D.2.

D.1. Handout
Payo�

• 3.50€ for your participation

• 2.50€ for answering the questionnaire

• Payo� from one Task (either A, or B, or C, or D)

First Task (A)

• Every participant will be assigned another participant

• You will make 21 decisions

• One Task will be randomly paid out

• 1 Point = 6 Euro-cents
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Example:

Period:
1 of 1

For each of the following distributions please indicate the one you prefer most

your payo� 30 35 40 45 50 55 60 65 70 your payo� 50

other’s pay-
o�

80 70 60 50 40 30 20 10 0 other’s pay-
o�

40

OK

In this example you obtain 50 points + the points from the decision of another person.

Second Task (B)
In this task you have to decide 10 times between two lotteries A and B.
Only one of those 10 decisions will be paid out.

Example:

Lo�ery A Lo�ery B Your choice

In 1 out of 10 cases you will
earn 1800 points and in 9 out
of 10 cases you will earn 1440
points

In 1 out of 10 cases you will
earn 3465 points and in 9 out
of 10 cases you will earn 90
points

Lo�ery A Lo�ery B

OK

In this example you would get the following payo� in one out of 10 cases:
1800 points in case you choose Lottery A and 3465 in case you choose Lottery B.

And you would get the following payo� in 9 out of 10 cases:
1440 points in case you choose Lottery A and 90 in case you choose Lottery B.

• 1 Point = .5 Euro-cents

Task D
Task

• You play 10 auctions with another participant

• If your bid is higher than the bid of the other participant you win the auction. Other-
wise, you lose the auction.
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• For that purpose 10 random valuations between 500 and 1000 will be drawn for you
and your fellow player each.

• Valuation: the amount you obtain in case you win the auction

• Decision: How much do you bid for each of the possible valuations

• In case you win you obtain your valuations as payo� and you have to pay the bid of
the loser

• In case you lose you don’t get any payo� and you don’t have to pay anything.

Procedure:
1 Part: Decision
For all possible valuations between 500 and 1000 you indicate your bid.

2 Part: Result
In this part, you can see your bids and the bids of the other player if he won the auction. You
also see which random valuations have been drawn for you and which auctions you won.

3 Part: Adaptation
You can increase your bids. However, you cannot change the outcome of the auction. E.g. if
you have lost an auction then it will still stay this way.

2 Part: Implementation
To determine whether your adaptation will be implemented you have to bid with another
player for whether the adaptation will be implemented or not.
If you bid more than this other player your adaptation will be implemented and you have to
pay the bid of this new player for the adaption.
If you bid less, you don’t pay anything, however, you adaption will also not be implemented.

Payo�

• 1 point= 0.01 €

• If task D is determined as payo�-relevant only one of the 10 auctions will be paid out

• You additionally get a 5€ payment if this task is paid out

• + Payo�=
If you win the auction: Valuation - Bid of the losers (old or new) - bid for the implementation
of the adaptation (in case the adaptation will be implemented for you)
If you lose the auction: - bid for the implementation of the adaptation (in case the adaptation
will be implemented for you)
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Task C
Task

• You play 15 rounds.

• You play every round 10 auctions with a new participant

• If your bid is higher than the bid of the other participant you win the auction. Other-
wise, you lose the auction.

• For that purpose 10 random valuations between 0 and 100 will be drawn for you and
your fellow player each. (E.g. both of you will have di�erent valuations)

• Valuation: the amount you obtain in case you win the auction

• Decision: How much you bid for each of the possible valuations

• In case you win you obtain your valuations as payo� and you have to pay the bid of
the loser

• In case you lose you don’t get any payo� and you have to pay your own bid.

Procedure:
1 Part: Decision
For all possible valuations between 0 and 100 you indicate your bid.
The maximal possible bid is 150 points.

2 Part: Result
In this part, you can see your bids and the bids of the other player. You also see which ran-
dom valuations have been drawn for you and which of the 10 auctions you won.

Payo�

• 1 point= 0.10 €

• If task C is determined as payo�-relevant only one of the 15 rounds will be paid out.

• If task C is determined as payo�-relevant only one of the 10 auctions will be paid out.

• You additionally get a 7€ payment if this task is paid out.

• + Payo�=
If you win the auction: Valuation - Bid of the losers
If you lose the auction: - your bid
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D.2. Text of the Video instructions
At the beginning of the experiment subjects watched a video which explained the di�erent
parts of the experiment. In the following we show the text of the videos translated into
English. The German version of the text is available upon request from the authors. The
videos can be obtained here: https://www.kirchkamp.de/research/SpiteVsRisk.html

Text to the video: General instructions

Welcome to this economic experiment. Today’s experiment consists of four sub-experiments.
Let us call them, for simplicity, A, B, C, and D. Additional to these tasks you will answer a
questionnaire at the end. Let us come to the reimbursement of today’s experiment. You will
get 3.50€ for the participation in this experiment. You will get additional 2.50€ for answer-
ing the questionnaire. And you will get the payment from one of the tasks. Either from Task
A, or Task B, or Task C, or Task D. Prior to each task, you will see an instructive video.

Text to the video: SVO (Murphy et al., 2011)

Let us now come to the �rst sub-experiment. In this sub-experiment every participant
will be randomly assigned to another participant. For example, participant A will be assigned
participant B, and participant B will be assigned participant C and so every participant will be
assigned a di�erent participant. Accordingly, the decision of participant A will be in�uential
for the payo� of participant B and the decision of participant B will have an in�uence on
the payo� of participant C and so forth. You will make 21 decisions over distributions. Only
one decision will be randomly picked for payo� in case this sub-experiment is chosen for
payo�. Here you see an example for one such decision. The decision consists of choosing
one of the distributions. This distribution in�uences your payo� and the payo� of your fellow
participant, who was randomly assigned to you. Let us assume you choose the distribution
marked by the red circle. Then you will see your payo� on the top right side. On the lower
top side, you can see how much the participant assigned to you will get as payo�. In this
example, you earn 50 points. The participant assigned to you gets 40 points in this example.
Let us assume this decision will be randomly drawn to be payo�-relevant at the end of the
experiment. Let us further assume that you, as player A, choose the decision marked by the
red circle. Then you would earn 50 points. Let us further assume that the player, to whom
you were randomly assigned, let us call him player Z, chooses the same decision. Then you
would get 40 points from this player. In this sub-experiment, every point is worth 6 cents.
In the just mentioned example, you would earn 50 points for your decision plus 40 points
for the decision of the player who in�uences your payo�. All together you would earn 90
points, which is worth 5.40€. If this task is chosen for payo� you will earn, in addition to the
3.50€ for participating in the experiment and the 2.50€ for answering the questionnaire, the
payo� of one randomly drawn distribution. Please do not forget to click “done” at the end of
a decision. If you have any further questions please press the red button on your keyboard
and we will come to you. Otherwise, we wish you good luck.
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Text to the video: Risk

Let us now come to the second task. Here you have to decide 10 times between Lottery A
and Lottery B. Only one of the 10 decisions will be randomly implemented. Here you can see
how the interface will later look like for you. In this column, you have to make your decision.
Here you can choose between Lottery A and Lottery B. Only one of the 10 decisions will be
randomly implemented for you and will in�uence your payo�. Hence, the �rst decision could
be drawn. Or the fourth. Or the tenth. Which decision will be payo�-relevant for you will
be determined randomly by the computer and will be announced to you at the end. Let us
take a closer look at one such decision. Let us look for example at the �rst row. Here you
see Lottery A and Lottery B. You now have to decide between Lottery A and Lottery B. In
this example you would earn in one out of ten cases the following payo�: 1800 points if you
have chosen Lottery A and 3465 points if you have chosen Lottery B. And in nine out of ten
cases you would earn the following payo�: 1440 points if you have chosen Lottery A and 90
points if you have chosen Lottery B. In this sub-experiment, every point is worth .50 cents.
If this sub-experiment is drawn for payo� only one lottery will be randomly chosen and the
lottery will be played according to your choice. If this task is chosen for payo� you will earn
3.50€ for participating in the experiment and the 2.50€ for answering the questionnaire plus
the payo� from this sub-experiment. If you have any further questions please press the red
button on your keyboard and we will come to you. Otherwise, we wish you good luck.

Text to the video: Auction

Let us now come to task C. Please note: At the end of this video you will answer 3 control
questions to check whether you have understood this task. This task consists of 15 rounds.
Each round you will play 10 auctions with a new player. If this sub-experiment is chosen
for payo� only one of the auctions will be randomly paid out. In this sub-experiment every
point is worth 10 cents. Every auction consists of the following parts: In every auction, two
players take part who bid for a prize. In this example player A and player B. Both players
value the prize randomly di�erently. Hence, player A values the prize with valuation A and
player B values the prize with valuation B. E.g. valuation corresponds to how worth the
prize is to one player. Both submit a bid according to their valuation. Let us assume that
the bid of player A is higher than the bid of player B. In this case player A wins the auction
and his payo� is: The valuation of player A minus the bid of the loser- in this case player
B. Player B loses the auction, e.g. he is not getting any payo� however he still has to pay
his bid. Let us now come to the decision in this task. In every round, you play 10 auctions
with one randomly assigned player. You will decide for all possible valuations how much
you want to bid. Out of all possible valuations, 10 valuations will be drawn randomly by the
computer and you will bid according to your decision. To repeat: The payo� of one auction
is calculated as the following: If you win the auction you gain your valuation minus the bid
of the loser, in this case your co-player. Let us consider the following example: let us assume
your valuation is 60 points. And the bid of your co-player for his, to you unknown, valuation
is 40. If you have bid for example 50 points, then you win the auction, as you bid more than
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your co-player. And you obtain the following payo�: Your valuation minus the bid of the
loser. Hence, 60 points, because this corresponds to your valuation, minus 40 points, the bid
of the loser. Which results in 20 points which equates to 2€. If you have bid for example
30 points, then you lose the auction, as you bid less than your co-player, who bid 40 points.
Hence you pay the bid of the loser. In this case, you would pay 30 points, which equates to
3€. In case both bid the same one player will be randomly announced the winner and the
other the loser. Your interface will look like the following. The red circle shows here your
possible valuations. In the red marked area, you have to indicate how much you would bid if
your valuation would be 0, 10, 20 etc. The maximal possible bid is 150 points. On the button,
you see in which of the 15 rounds you are currently in. If you click on "draw" you can see
how much you would bid if your randomly drawn valuation is a number between 0 and 10 or
between 10 and 20 or 20 and 30 and so on. Every number between 0 and 100 can be randomly
picked by the computer to be your valuation. At the bottom, you see the possible valuations
and on the left you see your bids according to your function. Let us assume your random
valuation is 75. Then you would bid according to your input 40 points. If you are happy with
your bidding function please click "done". Here you see the results of every of the 10 auctions
in the �rst round. Here you can see your random valuations for each of the auctions. The
red circle shows here how you bid according to your input. And here you see the bid of your
co-player. In the red marked area you can see whether you won or lost the auction. And
hence, how many points you have won and lost, respectively. Let us, for example, look at
the �rst auction. Here you can see how much you bid and how much your co-player bid.
Let us, for example, look at the ninth auction. If this auction will be drawn for payo�, you
would lose and pay 3 points. Here you can see the auctions ones more graphically. The red
dots represent those auctions you have lost. The green dots represent those auctions you
have won. The blue crosses represent, in every auction, the bids of your co-player. If you
click on "done", you will be directed to a new round, in which you will play again 10 auctions
with a new player. If this task is chosen for payo� you will earn, in addition to the 3.50€ for
participating in the experiment and the 2.50€ for answering the questionnaire, 7€. Plus the
payo� of one auction out of the 15 rounds. Note that you can win but you can also lose those
auctions. If you have any further questions please press the red button on your keyboard
and we will come to you. Otherwise, we wish you good luck.

Text to the video: Market (Kimbrough-Reiss)

Let us now come to task D. Please note: At the end of this video you will answer 5 control
questions to check whether you have understood this task. In this task, you play one round in
which you will play 10 auctions. Only one of the auctions will be randomly paid out. In this
sub-experiment, every point is worth 1 cent. Every auction consists of the following parts:
In every auction, two players take part who bid for a prize. In this example player A and
player B. Both players value the prize randomly di�erently. Hence, player A values the prize
with valuation A and player B values the prize with valuation B. E.g. valuation corresponds
to how worth the prize is to one player. Both submit a bid according to their valuation. Let us
assume that the bid of player A is higher than the bid of player B. In this case player A wins
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the auction and his payo� is: The valuation of player A minus the bid of the loser- in this
case player B. Player B loses the auction, e.g. he is not getting any payo� and his payment
is 0 points. Let us now come to the procedure in this sub-experiment. This sub-experiment
consists of four parts. Let us come to the decision. You play 10 auctions with one randomly
assigned player. You will decide for all possible valuations how much you want to bid. Out of
all possible valuations, 10 valuations will be drawn randomly by the computer and you will
bid according to your decision. Here you see the interface in task D. The red circle shows
here your possible valuations. Here you have to indicate how much you would bid if your
valuation would be 500, 550, 600 etc. If you click on "draw" you can see how much you
would bid if your randomly drawn valuation is a number between 500 and 550 or between
550 and 600 and so on. Every number between 500 and 1000 can be randomly picked by the
computer to be your valuation. On the horizontal axis you see your valuations and on the
vertical axis you see your bids according to your input. Let us assume your random valuation
is 870. Then you would bid according to your input 600 points. If you are happy with your
input please click on "done". Let us now come to the second part of the task: the result. Here
you see the 10 auctions. Here you can see your random valuations for each of the auctions.
The red circle shows here how you bid according to your input. Here you can see whether
the bid of your co-player was smaller or higher than your bid. Here you can see whether
you won or lost the auction. In those auctions in which you lost you can see the bid of your
co-player The payo� of one auction is calculated as the following: If you win the auction
you gain your valuation minus the bid of the loser, in this case your co-player. If you lose
the auction you obtain 0 points as your payo�. Let us consider the following example: let us
assume your valuation is 650 points. And the bid of your co-player for his, to you unknown,
valuation is 540. If you have bid for example 600 points, then you win the auction, and you
obtain your valuation minus the bid of the loser as payo�. In this case 650, your valuation,
minus 540, the bid of your co-player. Hence, 110 points which equates to 1.10€. If you have
bid for example 530 points, then you lose the auction, as you bid less than your co-player.
Hence, you obtain a payo� of 0 points. In case both bid the same one player will be randomly
announced the winner and the other the loser. Let us now come to the third part of task D:
the adaptation. In the adaptation you can increase your bid, in those auctions you won. You
can also increase your bid in those auctions you lost. However, you cannot overbid your co-
player. E.g. if you have lost an auction it will stay this way. Here you can see the interface for
the adaptation. Here you can see your bids. The green lines mark your bids in those auctions
you have won, and the red lines mark your bids in those auctions you have lost. The red
circle marks here the bids of your co-player, if he has won the auctions. Here you can view
your new bids. You can view the increased bids in those auctions you have won and you can
view the increased bids in those auctions you have lost. You can adapt your bids by moving
the ruler in the marked circle. At the bottom, you can see the same information once more.
You can see your valuations. Your former bids and your new bids. Note that the adaptation
is not implemented for every player. Whether your adaptation is implemented depends on a
further bid. You can do that in the fourth part of task D: the implementation. Here you bid
for the adaptation. For that purpose, you will be assigned a new partner. You decide how
much you are willing to pay for implementing the adaptation. If your new partner bids more
than you, his adaptation will be implemented and yours will not. However, he will need
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to pay for this implementation as much as you were willing to pay for the adaptation. If
you bid more than your new partner, your adaptation will be implemented and his will not.
However, you will need to pay for this implementation as much as he was willing to pay for
the adaptation. The player, whose adaptation is not implemented, does not need to pay his
bid for the adaptation. Note: As you and your co-player are assigned a new player it might
happen that the adaptation of both players is implemented. It can, however, also happen that
no adaption or only one of the adaptations is implemented. Here you see the interface for
the implementation. Here you type in how much you are willing to pay to adapt the bid in
those auctions you lost. Here you type in how much you are willing to pay to adapt the bid in
those auctions in which you are the highest bidder. The payo� in this task, after adaptation,
is calculated as follows: If you win the auction you obtain as payo� your valuation minus
the bid of the loser. At that, you have to pay either the old bid of the loser or the new one,
dependent on whether the adaption of your co-player was implemented. In addition, you pay
the amount you are willing to pay for the adaptation of those auctions you won. If you lose
the auction, you have to pay, dependent on whether your adaption was implemented or not,
the amount for the adaption. If this task is chosen for payo� you will earn, in addition to the
3.50€ for participating in the experiment and the 2.50€ for answering the questionnaire, 7€.
Plus the payo� of one auction. Note that you can win but you can also lose those auctions.
If you have any further questions please press the red button on your keyboard and we will
come to you. Otherwise, we wish you good luck.

D.3. Control questions
To check and enhance the understanding of subjects, subjects had to solve the following two
sets of control questions. Subjects had seven attempts to solve these questions. If subjects
were not able to solve them after seven attempts they were presented the correct answers.
Questions are shown in Figures 18 and 19.
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Please answer the following questions
When entering numbers please insert integers only

A bids 528 and B bids 739, who wins the auction?
If the valuation of A is 650 and the bid of B is 550, how much payo� would A
obtain, if A bids 700?
If the valuation of A is 650 and the bid of B is 550, how much payo� would A
obtain, if A bids 500?
If the valuation of A is 520 and the bid of B is 550, how much payo� would A
obtain, if A bids 580?
If a wins the adaptation of his bids, can it be that also the co-player of player A
wins the adaptation?

OK

Figure 18: Control questions in the spite measure (Kimbrough-Reiss).

Please answer the following questions
When entering numbers please insert integers only

If A bids 16 and B bids 12, who wins the auction?
If the valuation of A is 18 and the bid of B is 24, how much must A bid to have the
smallest loss? (Tips: A number out of (0/11/18/24))
If the valuation of A is 18 and the bid of B is 10, how much must A bid to have the
highest (safe) payo� ? (Tips: A number out of (0/10/11))

OK

Figure 19: Control questions in the second-price all-pay auction.
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Lottery A Lottery B
In 1 out of 10 cases you will earn 1800
points and in 9 out of 10 cases you will
earn 1440 points

In 1 out of 10 cases you will earn 3465
points and in 9 out of 10 cases you will
earn 90 points

In 2 out of 10 cases you will earn 1800
points and in 8 out of 10 cases you will
earn 1440 points

In 2 out of 10 cases you will earn 3465
points and in 8 out of 10 cases you will
earn 90 points

In 3 out of 10 cases you will earn 1800
points and in 7 out of 10 cases you will
earn 1440 points

In 3 out of 10 cases you will earn 3465
points and in 7 out of 10 cases you will
earn 90 points

In 4 out of 10 cases you will earn 1800
points and in 6 out of 10 cases you will
earn 1440 points

In 4 out of 10 cases you will earn 3465
points and in 6 out of 10 cases you will
earn 90 points

In 5 out of 10 cases you will earn 1800
points and in 5 out of 10 cases you will
earn 1440 points

In 5 out of 10 cases you will earn 3465
points and in 5 out of 10 cases you will
earn 90 points

In 6 out of 10 cases you will earn 1800
points and in 4 out of 10 cases you will
earn 1440 points

In 6 out of 10 cases you will earn 3465
points and in 4 out of 10 cases you will
earn 90 points

In 7 out of 10 cases you will earn 1800
points and in 3 out of 10 cases you will
earn 1440 points

In 7 out of 10 cases you will earn 3465
points and in 3 out of 10 cases you will
earn 90 points

In 8 out of 10 cases you will earn 1800
points and in 2 out of 10 cases you will
earn 1440 points

In 8 out of 10 cases you will earn 3465
points and in 2 out of 10 cases you will
earn 90 points

In 9 out of 10 cases you will earn 1800
points and in 1 out of 10 cases you will
earn 1440 points

In 9 out of 10 cases you will earn 3465
points and in 1 out of 10 cases you will
earn 90 points

In 10 out of 10 cases you will earn 1800
points and in 0 out of 10 cases you will
earn 1440 points

In 10 out of 10 cases you will earn 3465
points and in 0 out of 10 cases you will
earn 90 points

Table 3: Choices in the Holt and Laury (2002) task.
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Submeasures No Spite in % Spite in % Average Spite
IA 84.00 16.00 3.17
IA-WP 91.00 9.00 1.36
RG 97.00 3.00 0.19
RG-WP 95.00 5.00 0.77
PS 96.00 4.00 0.42
PS-WP 96.00 4.00 0.31∑

82.00 18.00 4.87

Table 4: The allocation of choices considered (non-)spiteful in the six allocational tasks of
our own spite measure.
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