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Abstract

In this paper we are studying a multiple player two-armed bandit
model with two risky arms in discrete time. Players have to find
the superior arm and can learn from others’ history of choices and
successes. In equilibrium, there is no conflict between individual and
social rationality. If agents depart from perfect rationality and use
count heuristics, they can benefit from coordination (or centraliza-
tion) of search activities. We test the conjecture that agents gain from
coordination with a between-subject design in two treatments. In the
experiments we find no gains from coordination. Instead, we find less
severe deviations from the equilibrium strategy in the non-coordinated
treatment.
Keywords: two-armed bandit, parallel search, coordination,
experiment.

1 Introduction
Economic decision makers often have to make choices without knowing the
costs and benefits of possible alternatives. Consumers, for example, have
to choose among goods they have never tried out before. Firms have to
pursue projects with uncertain rewards. Selected goods and projects yield
their uncertain rewards only after some time lag. These decision situations
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rely on the gathering or learning of decision relevant information. Kenneth
Arrow stresses the fact that learning is a product of agents’ experience and
experiments. “Learning can only take place through the attempt to solve
a problem and therefore only takes place during activity” (Arrow, 1962, p.
155). Many of these learning processes can be modeled as search problems.
Firms’ problems of selecting between rivaling technologies, business strategies
or investment opportunities or consumers’ selection of occupation, consumer
goods and prices all fall into this category of search problems.

In this paper we are studying a decision making problem where agents
choose at several instances in time one out of two actions. Upon that choice
agents receive a payoff and learn more about future expected payoff from
that action. Such a problem is known as a bandit problem. As an example
Rothschild (1974) models choices of price by a monopolist. The monopolist
learns about consumer demand through his choices. These bandit problems
can also be used to model other decision problems such as job search or
choices of technologies. A recent survey on bandit problems is provided by
Sundaram (2005). For several simple cases this decision problem can often be
solved with the help of Gittins indices (see Gittins, 1979; Gittins and Jones,
1979).

When learning, one’s own experience is not the only source of information.
Learning does not only take place in isolation. Instead, decisions makers are
embedded in a broader system of social relations (Granovetter, 1985). This
holds for relationships among consumers as well as relationships between
and within firms. Based on the social learning theory of the psychologist
Albert Bandura (1977), decision makers can learn from the experiments and
experience of their peers, colleagues, neighbors and friends. In these socially
embedded decision making situations agents are influenced by what others
are doing.

As a consequence, we want to discuss the strategic interaction of two
agents who simultaneously face a bandit problem. Each agent’s payoff is
determined by his own actions and is not influenced by the action of the
other. However, agents can benefit from the information that the choices of
others reveal. This more complex problem of parallel search is treated by
Vishwanath (1988). Parallel search allows to simultaneously explore several
projects whose rewards are initially uncertain.

Understanding how people use available information from others is not
only important to understand individual decision making. Formal models of
social learning yield interesting results for aggregate behavior. How people
use the information made available by others also influences the performance
of the whole system. In the models of Banerjee (1992) and Bikhchandani
et al. (1992) agents make one-shot decisions based on their private signal
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and the past actions of others. As a consequence, agents may end up in an
information cascade and rationally ignore their private signal. They follow
the decisions of previous agents and choose suboptimal alternatives. This
phenomenon is also known as “herding” or “herd behavior”.

Other models of social learning incorporate repeated choice and infor-
mation on payoffs of actions. In contrast to the models of information cas-
cades, these models also allow for learning from one’s own experience and
acknowledge the fact that many social relations are long-lasting. Ellison and
Fudenberg (1993, 1995) show that social learning and communication with
random interaction in large populations may lead to efficient long-run learn-
ing on the social level even if agents are boundedly rational. Bala and Goyal
(1998, 2001) model social learning in large social networks as a generalized
bandit problem of parallel search.1 They analyze the convergence of behavior
of boundedly rational agents and the optimality of choice. As a result op-
timality and convergence depend crucially on the degree of local and global
interaction and the heterogeneity of agents.

Motivated by the literature on diffusion of innovation and collaborative
R&D, we consider a choice between two alternatives with unequal payoffs.
In the context of the diffusion of innovations these two alternatives can be
interpreted as two rivaling technologies, standards, or goods competing for
potential adopters. In the diffusion process one of the major obstacles is to
convince potential adopters that the innovation can be used in a beneficial
way. Geroski (2000) or Rogers (2003) provide an overview on the role of
information in the diffusion process. In the choice situation we consider,
agents can only learn about the quality of alternatives through their own or
other’s experiments. In contrast to the notion of network externalities, put
forward by Katz and Shapiro (1985) or Arthur (1989), learning from others
in our model is not based on direct payoff externalities between adopters.
The payoff gained directly from choices is independent from the choices of
other users.

Another possible application of our model is the decision of firms between
different R&D possibilities. Firms engaging in R&D face similar search prob-
lems when developing products or processes based on rivaling standards or
technologies. Firms which are operating in the same market might obtain
some information about their opponents’ research portfolio and, even, re-
search success. There are various channels through which informations leave
the firm, for example movement of personnel, informal networks between
engineers and scientists in different firms or formal R&D coordination and

1Bala and Goyal also use a two-armed bandit model with choice between two lotteries
for illustration. See Goyal (2007) for an comprehensive overview.
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joint ventures (see Mansfield, 1985; von Hippel, 1987). This information on
the activities of others in turn will affect the firm’s own research behavior.
Again, like in the case of diffusion of innovations, we abstract from any direct
payoff interaction between agents through patenting or early market entry.

Recent field experiments suggest that the experience of other members
of the social network matter for adoption choices of new technologies. Du-
flo and Saez (2003) and Bandiera and Rasul (2006) show in very different
social settings that the adoption by colleagues, neighbors and family mem-
bers is highly correlated with individual adoption propensity.2 However, field
data faces the reflection problem as discussed in (Manski, 1993, 2000). The
researcher cannot infer from field data, whether the observed individual be-
havior is influenced by group behavior (e.g. through learning from others)
or simply reflects unobserved heterogeneity. Additionally, field data usually
provides no information about the nature and intensity of social interaction.
A wide range of possible theoretical explanations may cause the observed
behavior: learning through communication and coordination, observational
learning, conformity or social norms.

Models of social learning have shown that the duration and intensity of
information exchange yield very different results for aggregate behavior. Lab-
oratory experiments allow to test the theoretical considerations on decision
making and learning in a controlled environment. Prominently, experiments
address social learning in the model environments of information cascades.
Anderson and Holt (1997) were the first to replicate the environment of in-
formation cascades in the laboratory. As predicted by the models of Banerjee
(1992) and Bikhchandani et al. (1992), cascades emerge in these experiments,
i.e. participants herd on suboptimal alternatives. However, participants de-
part from fully rational behavior and tend to rely more on their private
information. Subsequent studies like Huck and Oechssler (2000) found that
participants’ behavior can be better explained by simple count heuristics.
Kübler and Weizsäcker (2004) test the case of costly private information in
information cascades and find that participants overly rely on private in-
formation because they apply only short chains of reasoning. Participants’
systematically misperceive the error rate of previous decision makers.

In our model we investigate the effects of decision making heuristics or
rules of thumb on the overall efficiency of search and learning. We compare
the payoffs of these rules of thumb with payoffs of count rules for a pair of

2Additionally, there is a rich empirical literature treating social learning externalities in
the context of technology adoption (Foster and Rosenzweig, 1995; Munshi, 2004; Conley
and Udry, 2005) welfare and health program usage (Bertrand et al., 2000; Miguel and Kre-
mer, 2004; Munshi and Myaux, 2006) job search (Topa, 2001) and criminal activity(Glaeser
et al., 1996) in an impressive variety of settings.
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two agents which can observe each others choices and payoffs. We find gains
from coordination when agents’ behavior departs from Bayesian updating
and simple count heuristics are used.

In this paper we will test our theoretical predictions of individual decision
making with social learning in a two-arm bandit game experimentally. Banks
et al. (1997) tests how people actually make decisions and learn from their
own experience in various bandit games. The most likely decision rule that
explained participants’ behavior were stationary strategies, i.e. count rules.
Charness and Levin (2005) investigate deviations from Bayesian updating
for individual learning in a choice situation similar to ours. McElreath et al.
(2005) and Efferson et al. (2007) are the only studies we are aware of that test
social learning in a bandit game.3 However, in contrast to their experiments,
we look at participants that interact for more than one round and have more
information about the history of their fellow participants’ choices.

The outline of the paper is as follows: The next section presents the model
of choice we apply. In this section we will also analyze the theoretical effect
of decision heuristics compared to fully rational behavior. Section 3 describes
the experimental design and procedures. The results of the experiment are
presented in section 4. Section 5 concludes.

2 Model
We examine the decision making and learning of two agents in a two-armed
bandit game. We will start with the basic structure of the game. After that,
the equilibrium solution is discussed and expected equilibrium payoffs are
calculated. We will compare these results with expected payoffs of agents
who use decision-making heuristics.

In this game two agents, A and B, can choose between two lotteries, X
and Y . The lotteries can be interpreted as returns from search or payoffs
from the use of a certain technology or good. These two lotteries, X and
Y , have the probabilities pX and pY to make a profit. For simplicity we
normalize the size of the profit to 1. Hence, alternative X wins a profit
of 1 with probability pX and a profit of 0 with probability (1 − pX). In
the context of rivaling technologies, a profit of 1 might be interpreted as a
successful experiment, trial or positive feedback from ongoing developments
or trials.

There are two possible states of the world, X or Y . In the state X
the probability to win a prize pX using X is higher than the probability to

3Efferson et al. (2007) test a modified experimental design of McElreath et al. (2005)
with a more field-like subject pool in Bolivia.
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win a prize pY using Y . In the state Y the probability pY is higher than
pX . A possible interpretation might be that in state X the alternative X is
more successful, while in state Y the alternative Y is more successful. States
determine probabilities pX and pY as follows:

state pX pY
X p p
Y p p

with p > p and p = 1− p

Ex ante, both states, X and Y , have a given probability. For simplicity
we assume here that this probability is 1/2 for both states. Additionally we
assume that p and p add up to 1. The ex ante probabilities are known to
the agents, so are the values for p and p. What the agents do not know is
the actual state of the world. Hence, probabilities pX and pY are not known
to the agents ex ante. The only way to find out the state of the world is to
make an experiment or to learn from the experiment of the other agent.

Time is discrete with t ∈ {0, 1, . . . , T}. In each round t each agent can
choose (explore, research) one experiment, either X or Y . As both agents
simultaneously make experiments, each agent can observe the other agent’s
experiment only after all experiments in t are made. At the end of round t
every agent gets feedback about his own profit and the profit of the other
agent. If a profit of 1 is won in a experiment we call it a success.

We will use the following notation. The number of experiments with X
in round t is called etX . The number of experiments with Y is called etY . The
number of successes in round t with X is called stX , the number of successes
with Y is called stY .

For convenience we will denote the total number of experiments that have
been run up to round t with X and Y as follows:

Et
X =

t∑
τ=0

eτX Et
Y =

t∑
τ=0

eτY

Similarly we will also denote the total number of successes with X and
Y as follows:

St
X =

t∑
τ=0

sτX St
Y =

t∑
τ=0

sτY

Here we consider a situation where experiments and successes are pub-
licly known. These publicly known experiments and successes define the
History Ht. We will identify the history with the number of experiments and
successes, i.e. Ht = (St

X , S
t
Y , E

t
X , E

t
Y ). Initially H0 = (0, 0, 0, 0).
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Agents can update their beliefs about the probabilities of the states of the
world Pr(X | Ht) and Pr(Y | Ht). Initially Pr(X | H0) = Pr(Y | H0) = 1/2.
Agents can use these probabilities about the states of the world to determine
the probabilities ptX of a success with X and the probability ptY of a success
with Y. Initially p0X = p0Y =

(
p+ p

)
/2 = 1/2.

Given (unknown) probabilities pX and pY , in any given round t, the
probability to observe the given history Ht = (St

X , S
t
Y , E

t
X , E

t
Y ) is

Pr(Ht | pX , pY ) =
(
Et

X

St
X

)
pX

St
X (1− pX)

Et
X−St

X

(
Et

Y

St
Y

)
pY

St
Y (1− pY )

Et
Y −Et

Y .

Since in the X-state (pX , pY ) = (p, p) and the in Y -state (pX , pY ) = (p, p)

the conditional probabilities of X and Y are

Pr
(
X | Ht

)
=

Pr
(
Ht | p, p

)
Pr
(
Ht | p, p

)
+ Pr

(
Ht | p, p

) , (1)

Pr
(
Y | Ht

)
=

Pr
(
Ht | p, p

)
Pr
(
Ht | p, p

)
+ Pr(Ht | p, p)

. (2)

The probability of a success with X and Y is, hence,

ptX
(
Ht
)
= Pr

(
XH | Ht

)
p+

(
1− Pr

(
XH | Ht

))
p (3)

ptY
(
Ht
)
= Pr

(
YH | Ht

)
p+

(
1− Pr

(
YH | Ht

))
p (4)

Choices of agents A and B will be called (cA, cB) with cA, cB ∈ {X, Y }.
Such a pair of choices will lead to a couple of consequences (sA, sB) with
sA, sB ∈ {0, 1}. If, e.g., agent A was successful with the experiment we
will say sA = 1, if agent A was not successful we will say sA = 0. We will
denote the probabilities of an outcome (sA, sB) given a pair of choices (cA, cB)
with Pr(sA, sB | cA, cB). Such an outcome will yield an immediate payoff ut

and will also generate a new history Ht+1. All possible consequences are
summarized in table 1.

A strategy Si of agent i is a function that prescribes for each history Ht

a probability to choose either X or Y in the next round t+ 1. Furthermore,
given a history Ht, a strategy S also determines a probability distribution for
Ht+1 which, as long as t < T , leads to an expected profit ut+1 (Ht+1|SA,SB).
A pair of strategies (SA,SB) defines for each history Ht an expected profit
ut (Ht | SA,SB) in round t where ut can be constructed from table 1 with
Pr (sA, sB | cA, cB) as probability weights.

We will assume that players maximize their own expected total profits
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(cA, cB) (sA, sB) Pr(sA, sB|cA, cB) ut Ht+1

X,X 0, 0 (1− ptX)2 (0, 0) St
X St

Y Et
X + 2 Et

Y

X,X 1, 0 (1− ptX) · ptX (1, 0) St
X + 1 St

Y Et
X + 2 Et

Y

X,X 0, 1 (1− ptX) · ptX (0, 1) St
X + 1 St

Y Et
X + 2 Et

Y

X,X 1, 1 (ptX)2 (1, 1) St
X + 2 St

Y Et
X + 2 Et

Y

X,Y 0, 0 (1− ptX)(1− ptY ) (0, 0) St
X St

Y Et
X + 1 Et

Y + 1

X,Y 1, 0 ptX(1− ptY ) (1, 0) St
X + 1 St

Y Et
X + 1 Et

Y + 1

X,Y 0, 1 (1− ptX)ptY (0, 1) St
X St

Y + 1 Et
X + 1 Et

Y + 1

X,Y 1, 1 ptX · ptY (1, 1) St
X + 1 St

Y + 1 Et
X + 1 Et

Y + 1

Y,X 0, 0 (1− ptX)(1− ptY ) (0, 0) St
X St

Y Et
X + 1 Et

Y + 1

Y,X 1, 0 ptY (1− ptX) (1, 0) St
X St

Y + 1 Et
X + 1 Et

Y + 1

Y,X 0, 1 (1− ptY )p
t
X (0, 1) St

X + 1 St
Y Et

X + 1 Et
Y + 1

Y,X 1, 1 ptX · ptY (1, 1) St
X + 1 St

Y + 1 Et
X + 1 Et

Y + 1

Y, Y 0, 0 (1− ptY )
2 (0, 0) St

X St
Y Et

X Et
Y + 2

Y, Y 1, 0 (1− ptY ) · ptY (1, 0) St
X St

Y + 1 Et
X Et

Y + 2

Y, Y 0, 1 (1− ptY ) · ptY (0, 1) St
X St

Y + 1 Et
X Et

Y + 2

Y, Y 1, 1 (ptY )
2 (1, 1) St

X St
Y + 2 Et

X Et
Y + 2

Table 1: Choices and their consequences

E

(
T∑

τ=0

uτ (Hτ |SA,SB)

)
.

An equilibrium is a pair of strategies (SA,SB), such that for each history
the prescribed choices maximize expected total profits. If, in a given sub-
game, there is more than one equilibrium in pure strategies, we assume that
players play both strategies with equal probability.

The profit maximizing strategy implies that agents will choose X in the
last round if pTX > pTY . Agents will choose Y if pTX < pTY . This determines the
profits for the game that is played in the preceding rounds. For the preced-
ing rounds the game can be solved given parameters p and p by backward
induction.

It is interesting to observe that in each subgame Ht where a pure equi-
librium is played, this equilibrium implies X if ptX > ptY and Y if ptY < ptX .
In these cases, there is no conflict between individual and social rationality.
Both agents, A and B, will choose the same alternative. Given this rational
behavior of agents we can compute all expected total profits, given T , p and
p. The solid line in figure 1 shows the expected total profit for one agent and
variations of p and p respectively, given T = 2.
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Figure 1: Expected total profits (T=2)

Expected total profits are higher when the difference of
∣∣∣p− p

∣∣∣ is larger. If
the two alternatives are easier to distinguish and p approaches 0, the expected
total profit approaches 2.5 in a game of three rounds (T = 2). In this case,
players are indifferent in the first round; their expected profit of the first
round equals 1/2. After the first round, players find out about the true state
of the world with certainty and their expected profit in later rounds is 1. If p
approaches 0.5, alternatives are almost indistinguishable. As a consequence,
expected total profit drops to 1.5 as players are indifferent in every round.
E.g., if p = .25 and p = .75 each agent would earn an expected total profit
of 1.7969.

Calculating equilibrium profits per backward induction is complicated
and takes time. Agents may, instead, get around this cognitively demand-
ing and time consuming strategy by using “good” rules of thumb as argued
by Baumol and Quandt (1964). Experiments on information cascades and
bandit games suggest that participants’ behavior can be predicted more ac-
curately by simpler count heuristics (e.g. see Anderson and Holt, 1997;
Banks et al., 1997; Huck and Oechssler, 2000). Agents that follow a simple
count heuristic do not maximize expected total profits but will choose the
alternative that has been most successful in the past. As a consequence,
agents will choose X if St

X > St
Y and Y if St

Y > St
X . If both alternatives

have the same number of successes, St
X = St

Y , agents are indifferent and
we assume that they choose either X or Y with equal probability. We can
calculate expected total profits for a situation where both agents follow this
count heuristic, given T , p and p. Results for variations of p and p respec-
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tively are shown by the dashed line in figure 1. Again, expected total profits
increase when the alternatives are easier to distinguish, although there are
considerable efficiency losses compared to expected equilibrium profits.

These efficiency losses occur especially in situations where little or no
profits occur and agents are indifferent. In the first round, for example, it
is possible that both agents choose either X or Y and end up in a history
H = (0, 0, 0, 2) or H = (0, 0, 2, 0). In equilibrium both players should choose
X in H = (0, 0, 0, 2) and Y in H = (0, 0, 2, 0). In contrast, players using a
count heuristic are again indifferent between X and Y and make suboptimal
decisions.

Agents that use such a heuristic could profit from making coordinated
experiments. In situations where agents are indifferent, they could raise
their profits by coordinating on (X,Y ) or (Y,X). If the game lasts for three
rounds (T = 2), they would end up with expected profits equal to equilibrium
profits for all values of p. E.g., if p = .25 and p = .75 and agents use the
count heuristic, then expected total profit per agent are 1.7197. If agents
coordinate, they could obtain an expected total profit of 1.7969 each. For
longer games (T > 2), efficiency gains are still considerable and expected
profits in the case of coordination very close to equilibrium profits.

In summary, the usage of simple count heuristics decreases expected total
profits. However, players that use a count heuristic can coordinate their
activities and increase their profits. In short games boundedly rational agents
that coordinate their activities can even reach the expected total profit of
agents that use the equilibrium strategy.

3 Experimental design
Based on the theoretical results of our model and the effects of heuristics
on total expected profits, we want to test experimentally if non-coordinated
search really leads to the predicted efficiency losses. Additionally we want
to investigate whether players follow the equilibrium strategy. In order to
investigate this questions we use two different treatments with a between-
subject design.

In treatment PARTNER we let two players choose simultaneously be-
tween X and Y in the same fashion as in the model. Like in the model,
decisions are made simultaneously and information about the history is com-
mon knowledge. Hence, participants can learn from their own experience
and the experience of a fellow participant. In treatment SINGLE decisions
are made by only one player. This player makes two choices simultaneously
in every round and has full information about the history. As a consequence
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SINGLE players have the same number of observed experiments as players in
treatment PARTNER. In contrast to PARTNER, SINGLE players can fully
control both experiments in a period while each PARTNER player can only
control one experiment in a period.

Treatment PARTNER reflects the situation of two agents with sustained
social interaction and full information about each others. Treatment SINGLE
provides a benchmark case of perfect coordination. This coordination should
lead to higher profits in treatment SINGLE if players use a count heuristic.
If players use the equilibrium strategy, average expected profits should not
differ between SINGLE and PARTNER.

The experiment was conducted from September to December 2008 in the
computer laboratory of the University of Jena using z-Tree (Fischbacher,
2007). Participants were 94 students from the University of Jena. Partici-
pants were recruited by the use of ORSEE (Greiner, 2004). Students come
from a wide range of subjects and the composition of students does not differ
between treatments regarding major subjects and age.

62 subjects participated in treatment PARTNER. 32 subjects partici-
panted in treatment SINGLE. For this experiment the search problem lasts
for three rounds (T = 2) with p = .25 and p = .75. Participants play 30
search problems in one session. This repetition allows to capture learning
effects of individuals who repeatedly face such search problems. Participants
were supplied with pen and paper to write down the results of every round
of the 30 search problem in a table. Participants could therefore consult this
table to learn from previous search problems before entering their choice in
the computer.

Participants in treatment PARTNER were randomly matched in anony-
mous groups of 2 for each search problem. Matching groups had the size of
4 or 16 subjects Participants were not informed about the size of matching
groups. In each of the 30 search problems a new state of the world for each
group of matched participants was selected. As a result there are 9 indepen-
dent observations in treatment PARTNER and 32 independent observations
in treatment SINGLE.

In treatment SINGLE, subjects were matched in pseudo-groups of 2 for
each search problem. In each of the 30 search problems a new state of
the world for each pseudo-group was generated. However, participants were
not informed that these pseudo-groups were formed and did not get any
information about fellow participants in the same pseudo group. The seed
of the random number generator for matching and states of the world was
set to the same value for both treatments. Using this procedure there is for
each subject in treatment PARTNER at least one corresponding subject in
treatment SINGLE which shares the same sequence of states of the world.
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Participants received a flat fee of EUR 4 for participation. In treatment
PARTNER each point of received profit was exchanged for additional EUR
3. As participants of treatment SINGLE made two choices per round, each
point of profit was exchanged for EUR 1.50. To avoid income effects or
hedging, players are paid only for one selected game out of 30 repetitions.
This game is randomly selected by a draw from an physical urn at the end
of each session. Participants received an average payment of EUR 9,13 with
an minimum payment of EUR 4 and a maximum payment of EUR 13.

4 Results
In order to test our theoretical predictions we first look at the earned profit
of players in the experiment. If players use a count heuristic we expect
higher total profits in treatment SINGLE than in the PARTNER-treatment.
Specifically, we expect higher profits in t = 1 and to a lesser degree in t = 2.
In the first round (t = 0) average profits should not differ as players in both
treatments are indifferent between X and Y .

Table 2 reports the average total profit and average profits in round 0, 1
and 2. The means of independent observations are compared using a Welch
two-sample t-test. In the PARTNER-treatment the average profit of both
group members in each repetition of the game is calculated before calculating
the matching group mean. In treatment SINGLE the average of the first and
the second choice per subject is reported.

Average total profits in treatment PARTNER are higher than average
total profits in treatment SINGLE. However, the difference is not significant.
A two-sided t-test reveals that average profits per search problem between
the treatments differ at a 5%-significance level only for the first 15 repetitions
in round 2 (p=0.0345). Figure 4 shows the average total profits per search
problem in each treatment compared to the simulated expected equilibrium
profits. For both treatments total average profits seem to rise in the first
half of the experiment and fluctuate around equilibrium profits in the second
half.

The empirical average total profits allow for an easy comparison with our
simulation results for the equilibrium strategy and the count heuristic. In
the case of equilibrium strategy no difference is expected between the two
treatments; and as predicted no significant difference is found. However,
in the case of the simple count heuristic a average total profit of 1.7197
is expected in treatment PARTNER and a higher profit of 1.7969 due to
coordination in treatment SINGLE. The test, whether the true difference
between PARTNER and SINGLE is really 0.0772 is rejected using a two-
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PARTNER SINGLE t-test t-test
Avg total Avg total T-value p-value

profit profit
n 9 32
All repetitions
Mean total profit 1.7377 1.7120 0.492 0.628

(0.1214) (0.1870)
Mean profit, t = 0 0.4965 0.5089 -0.685 0.499

(0.0350) (0.0776)
Mean profit, t = 1 0.6134 0.5786 1.381 0.184

(0.0599) (0.0869)
Mean profit, t = 2 0.6278 0.6245 0.113 0.912

(0.0739) (0.0895)
Repetitions 1-15
Mean total profit 1.7384 1.6583 1.448 0.162

(0.1242) (0.2076)
Mean profit, t = 0 0.4833 0.4958 -0.152 0.881

(0.1387) (0.1008)
Mean profit, t = 1 0.6222 0.5583 2.302 0.035

(0.0682) (0.0900)
Mean profit, t = 2 0.6245 0.6042 0.689 0.498

(0.0643) (0.1154)
Repetitions 16-30
Mean total profit 1.7370 1.7656 -0.482 0.634

(0.1329) (0.2228)
Mean profit, t = 0 0.5000 0.5219 -0.933 0.358

(0.0391) (0.1000)
Mean profit, t = 1 0.6046 0.5990 0.178 0.861

(0.0747) (0.1128)
Mean profit, t = 2 0.6310 0.6448 -0.373 0.715

(0.0956) (0.1056)
Standard errors in parenthesis. The Welch two-sample t-test is used.

Table 2: Average Profits in Treatment SINGLE and PARTNER
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sample T-test (p=0.0095) and a Mann-Whitney U-Test (p=0.0284).
As a result non-coordinated search in treatment PARTNER did not lead

to lower profits. Instead non-coordinated participants even seem to achieve
slightly higher payoffs than participants in treatment SINGLE which had the
opportunity to coordinate their actions. Why is this the case? To answer this
question, we directly looked at decisions and checked whether participants
follow the equilibrium strategy.

For all pairs of decisions Ht is given. As a consequence, we can calculate
ptX(Ht) and ptY (Ht) for every round. Given these probabilities of success, we
can directly derive the optimal strategy. If ptX and ptY differ from 0.5, the
strategy implies a clear prediction about players’ behavior. If ptX > 0.5 > ptY ,
both players in treatment PARTNER should choose alternative X in t; in
treatment SINGLE the player should select X for his first and second choice
in t. If ptY > 0.5 > ptX , both choices in the next round should include
Y . Note that in the first round ptX = ptY = 0.5, which means that players
are indifferent and any pair of decisions is optimal. Hence, our analysis
of optimal decision-making only focuses on choices in the second and third
round (t = 1, 2).

Given the optimal pair of strategies, two types of errors are now conceiv-
able: (1) One of the two decisions in t violates the equilibrium strategy or
(2) both decisions in t are not in line with the optimal strategy. We call the
former case 1xERROR and the latter case 2xERROR. In treatment PART-
NER the case 1xERROR implies that one of the two players departs from
the equilibrium strategy, while 2xERROR implies that both players do not
follow the equilibrium strategy. In the SINGLE-treatment 1xERROR means
that the player is indifferent between X and Y and that one decision of the
player is not optimal, while 2xERROR implies that the player does not follow
the equilibrium strategy.

Table 3 reports the share on rounds with errors 1xERROR or 2xERROR.
Errors do occur in 11.1% of all rounds (t = 1, 2) in treatment PARTNER and
15.4% of all rounds (t = 1, 2) in treatment SINGLE. However, this difference
is not significant. Average error rates over all repetitions and all types of
errors and the 1xERROR-case do not differ at the 10% significance level.
The case 2xERROR (both choices violate the equilibrium strategy) occurs in
0.8% of all rounds (t = 1, 2) in treatment PARTNER and 3.4% of all rounds
(t = 1, 2) in treatment SINGLE. The t-test reveals that these error-shares
of 2xERROR differ at a 5%-significance level between the two treatments
(p=0.028). As the median of independent observations for 2xERROR is very
close to 0 in both treatments, the Mann-Whitney U-test does not support the
result of the t-test. Seemingly, in both treatments the case that one player
makes two errors or that two players both make an error is a rare event.
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PARTNER SINGLE t-test t-test
% of rounds % of rounds T-value p-value

(t=1,2) (t=1,2)
n 9 32
All repetitions
1xERROR 0.1025 0.1193 -0.544 0.591

(0.0623) (0.1280)
2xERROR 0.0083 0.0344 -2.284 0.028

(0.0108) (0.0612)
1xERROR or 2xERROR 0.1109 0.1536 -1.095 0.281

(0.0702) (0.1769)
Repetitions 1-15
1xERROR 0.1176 0.1448 -0.809 0.425

(0.0659) (0.1438)
2xERROR 0.0139 0.0375 -1.623 0.113

(0.0167) (0.0761)
1xERROR or 2xERROR 0.1315 0.1823 -1.195 0.240

(0.0724) (0.1980)
Repetitions 16-30
1xERROR 0.0875 0.0938 -0.185 0.855

(0.0747) (0.1299)
2xERROR 0.0028 0.0313 -2.573 0.015

(0.0059) (0.0616)
1xERROR or 2xERROR 0.0903 0.1250 -0.852 0.401

(0.0797) (0.1748)
Standard errors in parenthesis. The Welch two-sample t-test is used.

Table 3: Average number of optimal decisions
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Figure 2: Average total profit per repetition
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Nevertheless, the case that two players simultaneously make an error at the
same time happens less often than the case that one player makes two errors
in a row.

Figure 4 depicts the share of rounds with errors for each repetition. As in
table 3, overall error rates tend to go down with the number of repetitions.
This learning effect is more pronounced in the first 3 repetitions and is less
pronounced in later repetitions. As the share of 2xERROR is quite low over
the hole range of the experiment, no learning trend is observable for this
type of error. 2xERROR occurs more often in treatment SINGLE, especially
in the second half of the experiment; the t-test of the average appearance
of 2xERROR differs at the 5%-significance level (p=0.015) for the second
half of the experiment. However, the median of independent observations for
2xERROR is 0 for the second half in both treatments and the Mann-Whitney
U-test does once again not support the results of the t-test.

As a result of the error rates analysis, the equilibrium strategy is applied
in almost 85% of all rounds and explains at least one decision per round in
more than 95% of all rounds. Overall, both treatments do differ only to a
small degree regarding the number of errors made. Especially severe depar-
tures from the equilibrium strategy, as in the case of 2xERROR, happen less
often if decisions are made by different individuals. Unsurprisingly, profits
in both treatments do not differ much given this degree of optimality.

PARTNER SINGLE
% of 1xERROR explained 29.4% 25.3%

by count heuristic
% of 2xERROR explained 50.0% 28.8%

by count heuristic
% of 1xERROR and 2xERROR 31.4% 26.1%

explained by count heuristic

Table 4: Proportion of errors explained by count heuristic

Although departures from the equilibrium strategy do happen only in a
small proportion of cases, these errors might be simply a result of players
following a heuristic. The count heuristic allows a different pair of choices
in 27.7% of all rounds (t = 1, 2) in treatment PARTNER and 34.1% of
all rounds (t = 1, 2) in treatment SINGLE. However, the vast majority of
these conflicting situations between the equilibrium strategy and the count
heuristic involves either the one or the other being indifferent between X and
Y. In these cases the equilibrium makes a clear prediction which alternative
is to choose and the count heuristic is indifferent between X of Y or vice
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versa. The case that the equilibrium strategy and the count heuristic are
not indifferent but make conflicting predictions occurs only in 1.7% of all
rounds (t = 1, 2) in treatment PARTNER and 2.1% of all rounds (t = 1, 2)
in treatment SINGLE. These rare cases do not allow to classify subjects into
users of either the equilibrium strategy or the count heuristic.

Nevertheless, we can look at all cases of 1xERROR and 2xERROR and
compare whether the count heuristic explains these situations. In these cases
the count heuristic must be either indifferent between X and Y or makes a
clear-cut but conflicting prediction to the equilibrium strategy. Table 4 re-
ports all pairs of decisions of 1xERROR and 2xERROR that can be explained
by the count heuristic for all repetitions of the game. Overall, around one
quarter to one third of all errors can be explained by a count heuristic that
makes conflicting behavioral predictions. Remarkably, half of the 2xERROR-
cases in the PARTNER-treatment can be explained by the count heuristic.

5 Conclusion
In this paper we analyzed a choice situation of two rivaling technologies,
goods or standards in the context of a two-armed bandit model. In the model
agents have to learn about the superior alternative by making experiments
and learning from the experiments of others. Our model has shown that
agents can not make gains from coordinated search if they use the equilibrium
strategy but only when agents use a less demanding count heuristic instead.

We test the conjecture that agents gain from coordination with a between-
subject design in two treatments. Additionally we test whether agents do
follow the equilibrium strategy or depart from it. In the treatment PART-
NER two subjects make one decision per round and can learn from their
own experience and the experience of the other subject. In the treatment
SINGLE one subject makes two decisions per round and can learn only from
his own experience, but has the opportunity to coordinate the two choices.

As a result of the experiment we do not find efficiency losses by non-
coordinated search. Instead we find that total profits do not differ much in
the two treatments. Contrary to our theoretical considerations, average prof-
its in the PARTNER-treatment even seem to be slightly higher. An analysis
of decisions reveals that players in both treatments use the equilibrium strat-
egy to a very high degree. The case that two decisions in a round are not
in line with the equilibrium strategy happens less often in treatment PART-
NER than in treatment SINGLE. Hence, the existence of two individuals
making simultaneous decisions decreases the probability that all decisions in
a round are not in line with the equilibrium strategy. Overall, participants
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of the experiment showed a surprisingly high degree of optimality and do not
seem to use the count heuristic primarily. Nevertheless, the count heuristic
explains a large share of non-optimal behavior.

Contrary to theory, coordination of search processes has not yielded
higher profits in the experiment. Instead decisions made by separate individ-
uals increase the optimality of decision making and decrease the probability
of severe errors, although the potential effect of increased optimality on prof-
its seems to be rather small. These experimental results shed a new light
on the benefits of coordination in R&D and diffusion processes. At least in
our well-structured model environment coordination did not have any posi-
tive effect on the efficiency of search. Given the high costs of coordination
in R&D and diffusion processes that are not captured in our experimental
design, coordination might even be detrimental for search-efficiency. Addi-
tionally decentralized search did decrease the probability of severe errors in
our experimental setting. In the context of coordination in R&D and diffu-
sion processes, centralization of search might lead to very costly undesirable
developments.
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