

Wirtschaftswissenschaftliche Fakultät Prof. Dr. Oliver Kirchkamp Lehrstuhl für Empirische und Experimentelle Wirtschaftsforschung

6 August 2019 12:39:48

5 Auktion theory, 22. 7. 2008

Past exam papers

Auction theory

Contents

- 1 Formulae
- 2 MW24.3, 27. 7. 2019
- 3 Auktion theory, 26. 2. 2013
- 4 Auktion theory, 21. 7. 2009
- 1
 6
 Auktion theory, 5. 2. 2007
 4

 2
 7
 Auction theory, 13. 5. 2005
 5

 2
 8
 Auction theory, 14. 10. 2004
 5

 3
 9
 Auction theory, 27. 7. 2004
 6

3

1 Formulae

$$\begin{split} F(x) &= \operatorname{Prob}[X < x] \qquad f(x) = F'(x) \\ \int_{x_0}^{x^1} f(x) \, dx = \operatorname{Prob}[x_0 < x < x_1] \\ E(X|X < x) &= \frac{1}{F(x)} \int_0^x t f(t) \, dt \\ \lambda(x) &\equiv \frac{f(x)}{1 - F(x)} \qquad \sigma(x) \equiv \frac{f(x)}{F(x)} \\ F(x) &= 1 - \exp\left(-\int_0^x \lambda(t) \, dt\right) = \\ &= \exp\left(-\int_x^\omega \sigma(t) \, dt\right) \end{split}$$

$$\begin{split} F_{1}^{(n)}(y) &= F(y)^{n} \\ f_{1}^{(n)}(y) &= n \cdot F(y)^{n-1} \cdot f(y) \\ f_{2}^{(n)}(y) &= f(y) \cdot F(y)^{n-2} \cdot (n-1) \cdot n \cdot \left(1 - F(y)\right) \\ f_{2}^{(n)}(y) &= f_{1}^{(n-1)} \cdot n \cdot \left(1 - F(y)\right) \end{split}$$

$$\begin{split} f_{1,2}^{(n)}(y_1,y_2) &= \\ &= \begin{cases} \mathsf{F}(y_2)^{n-2} \cdot \mathsf{f}(y_1) \cdot \mathsf{f}(y_2) \cdot n \cdot (n-1) & \text{if } y_1 \geqslant y_2 \\ 0 & \text{otherwise} \end{cases} \end{split}$$

$$\mathbf{f}_{2}^{(n)}\left(z\middle|\mathbf{Y}_{1}^{(n)}=\mathbf{y}\right)=\mathbf{f}_{1}^{(n-1)}\left(z\middle|\mathbf{Y}_{1}^{(n-1)}\leqslant\mathbf{y}\right)$$

$$\begin{split} \mathfrak{m}^{\mathrm{I}}(x) = & \mathsf{G}(x) \cdot \beta^{\mathrm{I}}(x) \\ \mathfrak{m}^{\mathrm{II}}(x) = & \mathsf{G}(x) \cdot \mathsf{E}\left[Y_{2}^{(n)}|Y_{1}^{(n)} = X\right] \\ \beta^{\mathrm{I}}(x) = & \mathsf{E}\left[Y_{1}^{(n-1)}|Y_{1}^{(n-1)} \leqslant x\right] = x - \int_{0}^{x} \frac{\mathsf{G}(y)}{\mathsf{G}(x)} \, dy \\ \beta^{\mathrm{I}}(x, r) = & \frac{1}{\mathsf{G}(x)} \left(r \cdot \mathsf{G}(r) + \int_{r}^{x} y \cdot g(y) \, dy\right) \\ \mathfrak{m}^{\mathrm{I}}(x, r) = & r \cdot \mathsf{G}(r) + \int_{r}^{x} y \cdot g(y) \, dy \end{split}$$

2 MW24.3, 27. 7. 2019

Explain your answers briefly.

- 1. Consider an auction with two bidders and valuations which are distributed independently and uniformly over the interval [0, 1]. Bidder 1 knows that bidder 2 uses the bidding function $b_2(x_2) = \sqrt{x_2}$.
 - a) What is a best reply of bidder 1 in a first price auction?
 - b) What is the expected payment of bidder 1 with valuation x in a first price auction?
 - c) What is the ex-ante expected payment (i.e. before the own valuation is known) of a bidder 1 in a first price auction?
 - d) What is the best reply of bidder 1 in a second price auction?
 - e) What is the expected payment of a bidder 1 with valuation x in a second price auction?
 - f) What is the best reply of bidder 1 in an all-pay auction?
- Consider an auction for a single object with two bidders where valuations are distributed according to

$$F(x) = \begin{cases} 0 & x < 0 \\ x^3 & x \in [0, 1] \\ 1 & \text{otherwise} \end{cases}$$

for both bidders.

3 Auction theory, 26. 2. 2013

1. Consider an auction for a single object with two bidders where $\omega = 1$ and valuations are distributed according to

$$F(\mathbf{x}) = egin{cases} 0 & \mathbf{x} < 0 \ \mathbf{x}^2 & \mathbf{x} \in [0,1] \ 1 & ext{otherwise} \end{cases}$$

for both bidders. What is the symmetric equilibrium bidding function?

- 2. What is the expected payment ex-interim?
- 3. What is the expected payment ex-ante?
- 4. What is the seller's expected revenue?
- 5. Now assume the seller can set a reserve price r. The two bidders still have valuations distrib-

- a) What is the symmetric equilibrium bidding function in the first price auction?
- b) What is the expected payment ex-interim (i.e. once a bidders knows the own valuation) in the equilibrium of the first price auction for each bidder?
- c) What is for each bidder the expected payment ex-ante (i.e. before a bidder knows the own valuation) in the equilibrium of the first price auction?
- d) What is in this case the seller's expected revenue?
- e) What is the symmetric equilibrium bid in the all-pay auction?
- f) Now assume the seller can set a reserve price r. Bidders still have valuations as above. What is the expected payment in the first price auction with a reserve price r for a bidder with valuation x > r?
- g) What is in this situation the symmetric equilibrium bidding function for a bidder with valuation x > r?
- h) What is the seller's expected revenue?
- i) What is the revenue maximising reserve price?

uted as above. What is the symmetric equilibrium bidding function?

- 6. What is the expected payment ex-interim?
- 7. What is the expected payment ex-ante?
- What is the seller's expected revenue if the seller has an own valuation of x₀ for the object? (the expected revenue should take into account this own valuation in case the object remains unsold.)
- 9. Assume $x_0 = 1/4$. What is the seller's profit maximising r?
- 10. So far we have (in the lecture and also in this exam) assumed that bidders maximise expected payoffs, i.e. that they are risk-neutral. Let

us drop this assumption and instead assume that bidders maximise the expectation of a utility function $u(x) = x^{\rho}$ where x is the payoff (i.e. the difference between monetary valuation and payment) and $\rho > 0$ is a parameter that characterises attitudes towards risk. Return to problem (1). Can you use the revenueequivalence principle to find an equilibrium

4 Auction theory, 21. 7. 2009

- 1. Consider an auction with two bidders. Valuations x are uniformly and independently distributed for both bidders over the interval [0, 1]. Bidder 1 knows that bidder 2 always follows the bidding stratagy $b_2(x) = x^2$.
 - a) What is the best reply of bidder 1 in a second price auction?
 - b) What is the best reply of bidder 1 in a first price auction?
 - c) What is the expected payment of a bidder 1 with valuation x in this situation in a first price auction?
 - d) What is the ex-ante expected payment of a bidder 1 in this situation in a first price auction?
 - e) What is the expected payment of a bidder 1 with valuation x in this situation in a second price auction?
 - f) What is the ex-ante expected payment of a bidder 1 in this situation in a second price auction?
 - g) Is it surprising that the expected payments in the first and second price auctions here are not the same? Why does the revenue equivalence theorem not apply?
- 2. Consider an auction with two bidders. Valuations are independently distributed and follow

here, now under the assumption that expected utility, and not expected payment is maximised? Explain your answer!

- 11. Try to formulate a condition for $\beta'(x)$ in equilibrium.
- 12. Solve this condition for $\beta(x)$.

the density function

$$\begin{bmatrix} \sqrt{x} & \text{if } x \in [0, 1] \\ 0 & \text{otherwise} \end{bmatrix}$$

- a) What is the equilibrium bidding strategy $\beta^{II}(x)$ in a second price auction?
- b) What is the expected payment $\mathfrak{m}^{\mathrm{II}}(x)$ of a bidder with valuation x in the second price auction?
- c) Use the revenue-equivalence principle to determine the equilibrium bidding strategy $\beta^{I}(x)$ in the first-price auction.
- d) Use direct profit-maximisation (without using revenue-equivalence) to determine the equilibrium bidding strategy $\beta^{I}(x)$ in the first-price auction.
- e) What is the equilibrium bidding strategy $\beta^{A}(x)$ in an all-pay auction?
- f) Can the seller increase the revenue from the first price auction with the help of a reserve price? If so, what it the optimal reserve price?
- g) Now the seller is allowed to set an entry fee. Can such a fee be used to raise the seller's profits in the first price auction? What is the optimal entry fee?

5 Auction theory, 22. 7. 2008

The exam was set at the University of Jena. Participants had 60 minutes to answer all questions. The exam sheet also contained the formulas from Section 1.

Consider an auction with two bidders. Valuations x function are independently distributed and follow the density

$$f(x) = \begin{cases} 2 - 2x & \text{if } x \in [0, 1] \\ 0 & \text{otherwise} \end{cases}$$

Assume risk-neutral preferences and symmetric equi-

libria. Please explain all your answers!

- 1. What is the equilibrium bidding strategy $\beta^{II}(x)$ in the second-price auction?
- 2. What is the expected payment $\mathfrak{m}^{\mathrm{II}}(x)$ of a bidder with valuation x in the second price auction?
- Use the revenue-equivalence principle to determine the equilibrium bidding strategy β^I(x) in the first-price auction.
- 4. Use direct profit-maximisation (without using revenue-equivalence) to determine the equilib-

rium bidding strategy $\beta^{I}(x)$ in the first-price auction.

- 5. What is the equilibrium bidding strategy $\beta^A(x)$ in an all-pay auction?
- 6. Assume that the seller sets a fixed reserve price r. What is the expected payment m^I(x, r) of a bidder with valuation x in a first-price auction?
- 7. What is the expected revenue of the seller in this case?
- 8. What is the optimal reserve price in a secondprice auction?

6 Auction theory, 5. 2. 2007

The exam was set at the University of Jena. Participants had 60 minutes to answer all questions. The exam sheet also contained the formulae from Section 1.

- 1. In an auction with three bidders and private valuations these valuations are independent and uniformly distributed over the interval [0, 3].
 - a) What is the symmetric equilibrium bidding function in a first-price auction?
 - b) What is the symmetric equilibrium bidding function in a second price auction?
 - c) What is the symmetric equilibrium bidding function in an all-pay auction?
- 2. In an auction with three bidders and private valuations these valuations are distributed independently of each other according to $F(x) = x^2$.
 - a) What is the symmetric equilibrium bidding function in a first-price auction?
 - b) What is the symmetric equilibrium bidding function is a second-price auction?
 - c) What is the symmetric equilibrium bidding function in an all-pay auction?
- 3. In the lecture we derived the symmetric equilibrium bidding function for the first price auction for the case of two bidders and valuations which follow an exponential distribution (i.e. $F(x) = 1 e^{-\lambda x}$. The result was $\beta^{I}(x) = \frac{1}{\lambda} \frac{x}{e^{\lambda x} 1}$.

Use this result to derive a symmetric bidding function for the all-pay auction.

- 4. Consider an auction with two bidders and valuations which are distributed independently and uniformly over the interval [0, 1].
 - a) Bidder 1 knows that bidder 2 bids according to β₂ = x/2.
 What is a best reply of bidder 1 in a first price auction? What is the best reply of bidder 1 in a second price auction?
 - b) Bidder 1 knows that bidder 2 bids according to β₂ = ¹/₂ ^x/₂.
 What is a best reply of bidder 1 in a first price auction? What is the best reply of bidder 1 in a second price auction?
 - c) Bidder 1 knows that bidder 2 bids according to $\beta_2 = x \frac{1}{2}$. What is a best reply of bidder 1 in a first price auction? What is the best reply of bidder 1 in a second price auction?
 - d) Bidder 1 knows that bidder 2 bids according to β₂ = ^x/₄.
 What is a best reply of bidder 1 in a first price auction? What is the best reply of bidder 1 in a second price auction?
 - e) Bidder 1 knows that bidder 2 bids according to β₂ = x.
 What is a best reply of bidder 1 in a first price auction? What is the best reply of bidder 1 in a second price auction?

7 Auction theory, 13. 5. 2005

The exam was set at St. Andrews University as a part of EC 4203. Participants had 30 minutes to answer all questions. The exam sheet also contained the formulas from Section 1.

- An important theorem in auction theory is the revenue equivalence theorem. On which assumptions is the theorem based and what does it say? (25%)
- 2. Consider the situation of two bidders who have private valuations x_i for one good. These x_i are distributed independently and uniformly over [0, 1]. In the lecture we have found that for second-price auctions the weakly dominant bidding strategy for each bidder is to bid simply the own valuation, i.e. $\beta^{II}(x) = x$. Let us call the valuation of the other bidder y, then the expected payment of a bidder with valuation x is in

the second-price auction $m^{II}(x) = \int_0^x y \, dy =$

8 Auction theory, 14. 10. 2004

 $x^2/2$. Now consider a different auction institution, not a second-price auction, but a first-price all-pay auction, i.e. all bidders pay their bid, but only the highest bidder wins the object.

Use the revenue equivalence theorem to derive from the equilibrium of the second-price auction the symmetric equilibrium bidding function $\beta^{AP}(x)$ for first-price all-pay auction. (25%)

- Give an intuition for the curvature of the bidding function in the first-price all-pay auction. (25%)
- An all-pay auction looks like a strange institution. Where do we find all-pay auctions in real life? (25%)

The exam was set at Mannheim University. Participants had 90 minutes to answer all questions. The exam sheet also contained the formulas from Section 1.

Explain all your answers in a clear, concise and readable way. Make clear which of your answers belongs to which question. Make also clear what is an answer and what is only an intermediate result. If you can not find an answer for some of the questions in the given time, explain clearly and briefly how you would proceed if you had more time. If you come to the conclusion that in a given case an equilibrium bidding function does not exist, explain why it does not exist.

Consider an auction with two bidders, bidder 1 and bidder 2. Both bidders submit simultaneously their bids b_1 and b_2 . Bidder 1 wins if $b_1 > b_2$. Bidder 2 wins if $b_2 > b_1$. If $b_1 = b_2$ the winner is determined by tossing a coin.

- 1. Consider an All-pay auction. Bidder 1 pays only one half of his bid $b_1/2$. Bidder 2 pays the complete bid b_2 .
 - a) Valations X₁ and X₂ for both bidders are distributed according to the function F(x). Can one use the revenue equivalence priciple to determine equilibrium bidding functions?
 - b) Determine the equilibrium bidding func-

tions under the assumption that valuations X_1 and X_2 are distributed uniformly over [0, 1].

- Now bidders have the same valuation X*.
 What are they doing in equilibrium?
- 2. Now consider the following variant of a first price auction. Bidder 1 pays, if he wins, one half of his bid $b_1/2$. Bidder 2 pays, if he wins, his bid b_2 .
 - a) Valations X₁ and X₂ for both bidders are distributed according to the function F(x). Can one use the revenue equivalence priciple to determine equilibrium bidding functions?
 - b) Determine the equilibrium bidding functions under the assumption that valuations X₁ and X₂ are distributed uniformly over [0, 1].
 - c) Now bidders have the same valuation X*.What are they doing in equilibrium?
- Now consider the following variant of a second price auction. Bidder 1 pays, if he wins, b₂/2, bidder 2 pays, if he wins, b₁.

- a) The situation is similar to a second price auction. Is it a dominant strategy to bid his true valuation X? If not, is there any other dominant strategy?
- b) Valations X_1 and X_2 for both bidders are distributed according to the function F(x). Can one use the revenue equivalence priciple to determine equilibrium bidding functions?
- c) Determine the equilibrium bidding functions under the assumption that valuations X₁ and X₂ are distributed uniformly over [0, 1].
- d) Now bidders have the same valuation X*. What are they doing in equilibrium?
- 4. Which of the above three auction types would you choose – given the above assumptions – if you are the seller?
 - a) Assume first a risk-neutral seller.
 - b) Now assume a risk-averse seller. How can you model risk-aversion? Can you find a specific functional form of a utility function to determine the utility maximising auction under risk aversion. Can you make a more general statement without assuming a specific function form?

- 5. Consider the following situation. Two bidders have valuations X_1 and X_2 for an object. Valuations are distributed according to F(x). Bidders participate sequentially in the auction. First the auction determines a buy-now price p. This price is known to both bidders. Then bidder 1 submits his bid b₁. Bidder 2 does not observe b₁. If $b_1 \ge p$ then bidder 1 obtains the object and the auction ends. Otherwise bidder 2 can submit his bid b₂ and the bidder with the highest bid wins. Assume first the the winner pays the second highest bid.
 - a) What is an equilibrium strategy of bidder 2
 - b) What is an equilibrium strategy of bidder 1
 - c) What buy-now price is chosen by the revenue maximising auctioneer.
- 6. Now assume that the winner pays the own bid.
 - a) What is an equilibrium strategy of bidder 2
 - b) What is an equilibrium strategy of bidder 1
 - c) What buy-now price is chosen by the revenue maximising auctioneer.

9 Auction theory, 27. 7. 2004

The exam was set at Mannheim University. Participants had 90 minutes to answer all questions. The exam sheet also contained the formulas from Section 1.

Explain all your answers in a clear, concise and readable way. Make clear which of your answers belongs to which question. Make also clear what is an answer and what is only an intermediate result. If you can not find an answer for some of the questions in the given time, explain clearly and briefly how you would proceed if you had more time. If you come to the conclusion that in a given case an equilibrium bidding function does not exist, explain why it does not exist.

- 1. Consider an auction with an entry fee. Assume that the seller has a valuation of zero for the object.
 - a) Can it be good for the seller to charge an entry fee? Give a brief intuition? Which effects does one have to consider?
 - b) Is the resulting allocation in a standard

auction with private values with an entry fee always efficient? Explain!

- c) What other problem do buyers and sellers face in such a situation?
- 2. Two bidders have private valuations X_1 and X_2 .
 - a) Both valuations are distributed independently and uniformly over [0, 1]. What is an equilibrium bidding function in a first price auction?
 - b) What is in this situation an equilibrium bidding function in a second price auction?
 - c) Now the valuation of bidder 2 is distributed uniformly over [0, 2]. What is now an equilibrium bidding function in a second price auction?

- d) What is an equilibrium bidding function in a first price auction in this case?
- Consider an auction with two bidders and interdependent valuations. Bidder 1 obtains a private signal x₁ and Bidder 2 obtains a private signal x₂. The two signals are independently distributed. The valuation for bidder 1 is

$$\mathbf{v}_1 = (1-\alpha)\mathbf{x}_1 + \alpha \mathbf{x}_2$$

and the valuation for bidder 2 is

$$\mathbf{v}_2 = (1-\alpha)\mathbf{x}_2 + \alpha \mathbf{x}_1$$

- a) Assume that bidders follow a symmetric equilibrium bidding strategy. For what values of α can no efficient allocation be obtained? How does the result depend on the distribution of each signal. Explain!
- b) Assume that signals are distributed independently and uniformly over [0, 1]. What is an equilibrium bidding strategy in a second price auction?
- c) What is an equilibrium bidding strategy in an English auction? (model the English auction as we did in the lecture)
- 4. Consider the following variant of an all-pay auction. There are two bidders, 1 and 2, with private valuations X₁ and X₂ for an object. They make bids b₁ and b₂ respectively. The bidder with the highest bid obtains the object. Regardless of

who is the winner of the auction bidder 1 always pays $\frac{1}{2}b_1$ and bidder 2 always pays b_2 .

- a) Can one use the revenue-equivalence principle to determine an equilibrium bidding function?
- b) If not, why not?
- c) If so, how could one proceed.
- d) Find an equilibrium.
- 5. Consider the following second-price all-pay auction. There are two bidders, 1 and 2 who make bids b_1 and b_2 respectively. The bidder with the highest bid obtains a fixed price P. Regardless of who is the winner of the auction, both bidders pay a cost which is characterised by the smaller bid $\underline{b} = \min\{b_1, b_2\}$ and individual parameters for each bidder, θ_1 and θ_2 . Bidder 1 pays $c_1 = \underline{b} \cdot \theta_1$, bidder 2 pays $c_2 = \underline{b} \cdot \theta_2$.
 - a) Assume that both bidders know that θ₁ = θ₂. What can you say about equilibrium bidding strategies?
 - b) Assume that $\theta_1 = \frac{1}{2}\theta_2$. What can you say about equilibrium bidding strategies?
 - c) Assume that $\theta_1 = 1$ and θ_2 is uniformly distributed over $[\frac{1}{2}, \frac{3}{2}]$. What can you now say about equilibrium bidding strategies?
 - d) Assume that both θ_1 and θ_2 are uniformly distributed over $[\frac{1}{2}, \frac{3}{2}]$. What can you now say about equilibrium bidding strategies?