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Abstract

In this study we disentangle imitation, reinforcement, and reciprocity in repeated
prisoners’ dilemmas experiments. We compare a simple situation in which players
interact only with their neighbours (local interaction) with one where players in-
teract with all members of the population (group interaction). We observe choices
under different information conditions and estimate parameters of a learning model.
We find that imitation, while assumed to be a driving force in many models of spatial
evolution, is often a negligible factor in the experiment. Behaviour is predominantly

driven by reinforcement learning.
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1 Introduction

In this paper we use experiments to disentangle imitation and reinforcement behaviour.
This research is motivated by an approach frequently followed in evolutionary game the-
ory: if agents can learn from their own experience as well as from other players’ experience,
then evolutionary game theory traditionally assumes that players weight information from
both sources equally. As an example for this assumption Axelrod (1984, p. 158ff) dis-
cusses the evolution of a network of cooperators and defectors in a prisoners’ dilemma and
assumes that players use a copy-best rule, i.e. they choose the strategy with the highest
payoff in the past, regardless whether this payoff was obtained by the learning players or
by their neighbours. Nowak and May (1992), Eshel, Samuelson, and Shaked (1998) and
several other articlesﬁ follow this approach. The copy-best rule is interesting since it helps
us to explain how cooperation emerges through imitation in networks.

A rule like copy-best involves a specific mixture of imitation and learning from own
experience. We want to find out whether this specific mixture is a good description of
behaviour. A rule like copy-best is simple and reasonable if we interpret the evolutionary
dynamics in a biological context where successful species displace less successful ones.
Also in an economic context where successful firms invade the markets of less successful
ones we may treat both sources of information equally. Neither biological resources nor
markets have the cognitive capabilities to make a distinction between the success of the
incumbent species or firm and the success of the invading species or firm.

Learning agents, however, may be able to distinguish between their own success and
the success of their neighbours. Whether they should do so depends on the heterogeneity
of the environment. Kirchkamp (1999) shows that if agents and neighbours are in the same
environment a neighbours’ experience is as good as an agent’s own experience — there
is no reason to value information differently. In a heterogeneous environment, however,
the experience of a neighbour may be specific to a situation that is different from the
agent’s situation. In such an environment agents should learn relatively more from their
own experience and relatively less from the experience of other players.

In this paper we investigate whether human players indeed weight own and neighbours’
information equally in homogeneous environments and differently in heterogeneous envi-
ronments. To control the degree of homogeneity, we compare two structures: In one
structure agents are located on a circle and interact in overlapping neighbourhoods. This
is what we call local interaction or a spatial structure. In such a structure players’ envi-

ronments are not entirely identical. Players may learn from their neighbours, however,

1See also Nowak and May (1993), Bonhoeffer, May, and Nowak (1993), Lindgreen and Nordahl (1994),
Kirchkamp (2000).



their neighbours’ success might be due to opponents that are not part of the interaction
neighbourhood of the learning players. In the other structure agents are in a group and
each agent is equally likely to interact with every other agent. This is what we call group
interaction or spaceless structure. In this structure all agents face the same interaction

partners.

From several other experiments we know that players learn from their own experience
and that they also imitate. A classic study that describes how players learn from their own
experience is Erev and Roth (1998). From this literature we know that a reinforcement
model describes a learning process fairly well in many different situations. Pingle and
Day (1996) find that participants of their experiments also imitate choices to economise
decision cost. Offerman and Sonnemans (1998) observe that players imitate beliefs of
other players if these are available. However, Offerman and Sonnemans (1998, p. 571)
also suggests that own experience might be “more important” for the adaptation of beliefs
than imitation.

What kind of framework should we use in order to study learning and imitation? We
have chosen a very simple framework, a prisoners’ dilemma. This is, however, not the
only possible choice. Some recent studies of imitation behaviour use the context of an
oligopoly. The oligopoly framework is particularly interesting in the context of learning
and imitation since learning and imitation may affect the equilibrium process. Vega-
Redondo (1997) presents a theoretical analysis of a Cournot oligopoly and finds that an
imitation based evolutionary process converges to the Walras equilibrium which is far away
from the Cournot-Nash equilibrium and which is also more competitive. Huck, Normann,
and Oechssler (1999) and Offerman, Potters, and Sonnemans (2002) use experiments to
find that players do imitate and do indeed tend to converge to the Walras equilibrium
in oligopolies if information about other players is available. Selten and Ostmann (2001)
develop the theoretical concept of an imitation equilibrium which is studied in Selten
and Apesteguia (2002) with the help of an experiment based on an oligopoly with spatial
competition. Selten and Apesteguia find that, indeed, features of the imitation equilib-
rium describe parts of actual behaviour better than the Cournot Nash concepts. In an
experiment by Bosch-Domenech and Vriend (2003), however, play remains close to the
Cournot Nash equilibrium and does not converge to the Walras equilibrium.

What we learn from these experiments is that imitation may play a role in oligopolies.
These experiments also help to distinguish among different equilibrium concepts in
oligopoly models. However, these experiments also show that it is not easy to disentan-
gle imitation of others from learning from own experience with the help of an oligopoly

experiment. The reason is the large strategy space. Players can and will choose many



different strategies among a large number of possible quantities. Hence, often players will
choose new quantities that have not been tried before. How can we interpret the choice of
new quantities as imitation or learning from own experience? Perhaps the chosen strat-
egy was close to one or more successful strategies used by other players or used by the
learning player, but how close must a choice be to be qualified as imitation? With so
many candidate strategies one would need additional and hard to justify assumptions to
relate players’ choices to past strategies.?

To avoid this problem we use a simpler setting. With the prisoners’ dilemma we study
a game with only two strategies. This game is conceptually close to an oligopoly game,
still, with only two strategies it is technically easier to interpret choices as learning. A
prisoners’ dilemma is not only interesting because it describes the well known dilemma
situation. What is useful here are two other properties: firstly, learning and myopic
optimisation may call for very different actions in this game, and, secondly, theoretical
analysis shows that the interaction structure may crucially determine the behaviour of a
population. If players copy successful strategies from their neighbours, cooperation may
be a stable outcome in prisoners’ dilemma games in a locally structured population, but

can not be stable in a population without such a structure (see footnote [1)).

Heterogeneity of the environment should theoretically influence imitation behaviour
(Kirchkamp 1999). We will, hence, compare two setups, a homogeneous environment
where all players face the same interaction neighbourhood and a heterogeneous environ-
ment with overlapping neighbourhoods.

Experiments where players are linked through a network and, thus, are in a hetero-
geneous situation have been done with coordination games, market games and prisoners’
dilemma games. Kosfeld (2003) provides an exhaustive summary of networks experiments.
Close to our study are those of Keser, Ehrhart, and Berninghaus (1998), Cassar (2002),
and Selten and Apesteguia (2002).

Keser, Ehrhart, and Berninghaus (1998) study how the structure of the network af-

2A solution for a related problem is used by Huck, Normann, and Oechssler (2000). In each round
the authors determine a best-reply quantity and an imitation quantity. Then they count the number of
choices that are within an interval around these two quantities. A similar procedure could be used to
distinguish between imitating others’ and imitating own experience. The problem of Huck, Normann,
and Oechssler is, however, easier to solve. In each round there is always a best response and always
an imitation quantity. Since we want to distinguish between imitating others and learning from own
experience we have to deal with the problem that in each round the best strategy is either used by
the learning player or used by the other players. In each round there is one explanatory observation
missing. To impute this missing observation one could assume that players create two quadratic models,
one for own experience and the other for others’ experience and then continue with Huck, Normann, and
Oechssler’s procedure. Reducing the strategy space, which is what we are going to do in the next section,
might be simpler.



fects selection of Pareto and risk dominant equilibria in coordination games. To answer
our question, however, coordination games are not ideally suited. In coordination games
we can not distinguish between a player who chooses a strategy as a result of imitating
successful neighbours, and a player who chooses a strategy as a result of myopic optimisa-
tion. Both motives call for the same action. Since we want to learn more about imitation
we have to study a different game.

Cassar (2002) studies coordination games and prisoners’ dilemmas. In her experiments
with prisoners’ dilemmas she finds how perturbations in the structure of a spatial network
affects choices. She compares three structures, a local one, a slightly perturbed one (what
she calls a small world) and a random network. She finds an interesting non-monotonicity:
The slightly perturbed network yields the smallest amount of cooperation.

Selten and Apesteguia (2002) study an oligopoly with a spatially differentiated prod-
uct. They are, however, not interested in the relation between learning from own ex-
perience versus imitation. They do not measure this relationship and they do not vary
the heterogeneity of their environment. What they find is that imitation seems to be a
relevant factor. What we want to find in this article is how relevant this factor is, as

compared to learning from own experience.

While we use space here to model similarity of situations and to allow studying the
evolution of strategies, space is also crucial in many economic situations. Restaurants or
shops along a street do not compete with the same strength with all other restaurants
or shops on that street. Strategic interaction and imitation is more important among
producers of similar products. Should we, therefore, find more tacit collusion in industries
where product space or geographic space is relevant for interaction?

In our experiment groups of players repeatedly play prisoners’ dilemmas either within
a locally structured neighbourhood (a circle with overlapping neighbourhoods) or within
an unstructured (spaceless) group. Players receive information about their neighbours
and their own payoffs. We find that players learn from their own experience. Success
of their neighbours, however, does not seem to play a large role. This holds for both
structures: the spatial as well as the spaceless one. As a consequence we do not find the
higher levels of cooperation in the spatial structure predicted by the theoretical literature
under the assumption of learning from neighbours (see footnote[l). Various modifications
of our setup do not change this result.

In section 2, we briefly summarise a theoretical argument that is based on imitation
and that suggests more cooperation in a spatial world than in a non-spatial world. We
will describe the first experimental setup without information about the payoff matrix in

section 3. In section |4 we come to our experimental results. We will study stage game



behaviour and learning behaviour. In section 4.2 we study a structure where a permanent
cluster of computerised cooperators facilitates the imitation of successful cooperation.
Section [4.3] studies the effect of introducing information not only about realised payoffs

but also about the payoff matrix. Section |5 concludes.

2 A simple model based on copy-best

In this section we will sketch a simple and common evolutionary learning process based
on Copy—bes‘ﬁ which suggests more cooperation in a spatial environment and less in a
non-spatial one.

Let us assume that players play a prisoners’ dilemma in a neighbourhood of five as
described in table [1. Players can only use the same strategy against all four neigh-
bours/group members. Playing C' contributes 5 points to the payoff of each neighbour,
playing D contributes nothing to the others but adds always 4 points to the own payoff.

Obviously, in a non-spatial (group) setting with myopic imitation, or replicator dynam-
ics, non-cooperation is always more successful than cooperation. Hence, in a non-spatial
setting, cooperation always dies out. In the upper part of figure [1 we give an example.
We simulate a group of five players who always play the strategy with the highest average
payoff in their neighbourhood (copy best average). With a small probability (1% in this
example) players ‘mutate’ and choose the other strategy.

If average payoffs for C' and D in period t are called u¢ and u?, respectively, if all
strategies are used in period ¢, and ul # uP then we can express the probability to play

¢ tomorrow as follows

Pleca) = 5 + (5 =€) signu’ — u?) 1)

where ¢ is the mutation rate. If u¢ = u” or one strategy was not used in period ¢ then
players repeat their choice.

In the example we start with 5 cooperating players who choose cooperation until the
first mutant arrives. This happens in our example in period 13 where one player mutates
and plays D. Being very successful, this player is imitated by all neighbours and from
period 14 on everybody plays D. Further mutants that appear in later periods do not

lead the group back to cooperation.*

3Similar processes are used e.g. in Nowak and May (1992, 1993), Bonnhoeffer, Nowak, and May (1993),
Lindgren and Nordahl (1994), Eshel, Samuelson, and Shaked (1998), Kirchkamp (2000).

4The only way to move a population where everybody plays D back to cooperation is a simultaneous
mutation of all five players. With independent mutations this is not very likely. And even if it happens,



‘Copy best average’ imitation in a group:
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0 =C, e =D. Time is shown on the horizontal axis, different players are shown on the vertical axis.
The first mutant D makes cooperation disappear completely in groups. Cooperation in circles, however,
persists despite mutant Ds.

(The imitation rule is ‘copy best average payoff’, the mutation rate is 1%, the imitation and interaction
radius is 2, as in the experiment. Simulations starts with 5 cooperators in the first period.)

o

FI1GURE 1: Simulated learning.

Own payoft: ‘
own | number of neighbours choosing C
group members
action 0 1 2 3 4
C 0 5 10 15 20
D 4 9 14 19 24

TABLE 1: Payoff Matrix

Player 1 2

Neighbourhood of Player 2 - - J - -

Action: .| @ D | D |D| D |D
# of other Cs in

the neighbourhood 2 2 3 4 3 2 2 ! 0 0 0
Own payoff | 4 4 | 9 [4] 4 |4
Average

payoff of C 12.5 12.5 — — | —
payoff of D 9 115 |14 | — |14 | 115 9 705 |7 | 525 | 4
in the neighbourhood

TABLE 2: Example of a neighbourhood of C's and Ds

\]



In a spatial setting and with similar imitation dynamics (see footnote however,

5 Let us assume that

cooperation is protected through space and may, hence, survive,
player 2 from table [2| knows his own payoff from playing D, which is 14, but also the
payoff from his two D-playing neighbours, 9 and 4. The average payoff of playing D is,
hence, 9. The two C-playing neighbours of this player have a payoff of 15 and 10, on
average, hence, 12.5. If player 2 copies the strategy with the highest average payoft then
player 2 will choose C' in the next period — thus, cooperation will grow.

In our example (see the bottom part of figure (1) cooperation grows from the initial
configuration of only five C's and is not much affected by mutants.

In describing the above dynamics we used the rule ‘copy best average payoff’ (see the
literature given in footnote(3). We should note that this learning rule does not distinguish
between a players’ own experience and his neighbours’ experience. This is expressed in

the following hypothesis:

Hypothesis SYMyg A player learns as much from his neighbours’ experience as from

his own.

We, furthermore, assumed that players would learn from payoffs of C' and D in the same
way, i.e. an increase in the observed payoff of C' would increase a player’s inclination to

play C' in the same way as a similar decrease in the observed payoff of D.
Hypothesis SYMgrr Players learn from C' and D in the same way.

It is, however, not obvious, that hypothesis SYMyg and SYMgrr should hold. In a spatial
structure players’ environments are not identical. Making no distinction between own
experience and one’s neighbours’ experience may, hence, be suboptimalE We summarise

this in the following hypothesis:

Hypothesis ASYMyg Players learn relatively more from their own experience and less

from their neighbours’ experience the more local their interaction structure is.

If hypothesis SYMyg and SYMgrgr hold, then we should, following the argument sketched

in section 2 and discussed in detail in the literature (see footnote[3), expect the following:

cooperation will not last for long since the first single mutant leads the population back to D. As a result
the population will spend most of the time in a state where most of them play D.

®With myopic optimisation (Ellison 1993) players would obviously never cooperate.

6Once the cluster of Ds becomes small the payoff of the remaining Ds grows and the process stops
or enters a cycle. With standard imitation processes stable equilibria are often reached when clusters of
successful C's are separated by small clusters of equally successful Ds.

"See Kirchkamp (1999).



Hypothesis COOP We find more cooperation in populations with a spatial structure

than in populations without such a structure.

If, however, learning is not symmetric and instead ASYMyp holds, the forces of imitation
are weaker. Imitation is, as we have seen in the example above, a major driving force
behind the survival of cooperation in a spatially structured population. A player who
looks only at his own payoff in a prisoners’ dilemma will quickly learn that defection gives
a higher payoff — regardless whether this player is learning in a spatial or a spaceless

structure. We might then find the following:

Hypothesis NO-COOP Levels of cooperation are not higher in a spatial structure.

3 The experimental setup

In this paper we describe results from five different treatments which are based on 35
sessions run in Barcelona and Mannheim, involving 339 participantsE. A list of these
sessions is given in appendix Al

In the current section we will give a description of the first two treatments. One of
them will be called a ‘circle’ treatment, the other ‘group’ treatment. We ran 4 sessions
on a circle and 10 in groups. The remaining three treatments are modifications that are
described in sections 4.2 and 4.3/ below.

e In each session of the circle treatment we study a spatial structure of 18 playersE
Participants are randomly seated in front of computer terminals that are networked
to create a neighbourhood structure (see left part of figure 2). Each player interacts
in each round with two neighbours to the left and two neighbours to the right.
Player zy in the figure is in interaction with i, 2,5, and y;,ys. Player x5 is in
interaction with x3, x4, and x1,z¢. Players are aware of this structure and observe
average payoffs of the strategies used by their four interaction neighbours. We ran

four sessions of this treatment.

e In the group treatment we study groups consisting of five players each. Each member
of a group interacts in every round with all members of the group (see right part of
figure 2). Players are again aware of this structure and can average observe payoffs

of the strategies used in their group. We ran ten sessions of this treatment.

8Students of the UPF in Barcelona and Universitit Mannheim respectively.
9In one of the treatments only 14 players showed up for the experiment. We pool the data from this
experiment with the others.
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F1GURE 2: Neighbourhoods

Thus, both in the group and in the circle treatment the number of interaction partners is
four. In the group sessions we invited 15 players that were randomly divided into groups
of five. We conducted three sessions, thus involving nine independent groups.

During any session players always interact with the same neighbours. Sessions last for
80 periods. In each period participants play a prisoners’ dilemma against all members of

their neighbourhood/group as described in table [1.

A critical issue is the information that we provide in each period to participants. To
be faithful to the copy-best setup in section 2 we could give detailed information about
payoffs and choices off all neighbours to participants. We will study such a setup in section
However, this setup has a drawback. The structure of the prisoners’ dilemma game
becomes obvious and strategic considerations replace learning.

We therefore start with a setup where we give only average information about payoffs.
Also the payoff matrix (table [1) is not known to participants. To allow players to learn
from their own experience we have to give them information about their own payoff u°"".
In addition we could give them information about average payoffs of the two strategies
in their neighbourhood u¢ and «”. This information would include their own success.
Participants could apply equation and use the copy best rule if they wanted to. We
fear, however, that in this setup participants are confused by obtaining information about
their own payoff 1oy, next to information about average payoff that again includes their

own payoff. We believe that participants will better understand the experiment if we

n c,other

separate payoff information into own payoff u°*" and payoff of the neighbours

10



History
Your action | in your neighbourhood the av-
and gains are | erage payoff was with. ..

D

D 14 12.5 9

Round

In the experiment strategies were called A and B. In some sessions A was the cooperative

strategy, in others B. Payoffs of Cs are shown in a , payoffs of Ds are shown in (gray .
In the experiment we use the colours red and blue.

TABLE 3: Representation of payoffs in the ‘less-information’ treatment

dother ~This is a small change but we should note that now participants can only

and u
approximatively implement copy-best. In section[4.1.4 we will explain in more detail how
they could do this.

Own payoffs and actions and the average payoff for their neighbours’” actions C' and D
are shown as in table (3. This takes place in circles and groups in the same way. Players
could change their strategy from period to period, but they always had to choose a single

strategy for all their neighbours.

4 Results

4.1 Results from the baseline treatments

We will first study stage game behaviour and find that in contrast to the simple imitation
dynamics discussed in section 2/ and summarised in hypothesis COOP there is not more
cooperation in space (in circles) than without space (in groups). Then we relate this
observation to learning. We will see that, contradicting hypothesis SYMyp, imitation is
a weak force. Players’ behaviour is much more driven by their own experience (learn-
ing through reinforcement) than by their neighbours’ experience which is in line with
hypothesis ASYMyg. The players’ actions over time are shown in appendix and

4.1.1 Stage game behaviour

In figure [3 we show the relative frequency of cooperation in circles and groups. Levels
of cooperation decrease over time and are about the same in groups and in circles. In

circles the average relative frequency of cooperation over all 80 periods is 0.176, in groups

11
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FI1GURE 3: Frequency of cooperative players in circles and groups over time
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the level is 0.187. Neither a t—tes& (t = —0.47, P, = 0.646, allowing for correlations
within sessions) nor a two-sample Wilcoxon rank-sum test (z = 0.820, P, = 0.4120)
find a significant difference between groups and circles. They are similar to what is found
in other non-spatial experimentsJH Hence, we do not find support for hypothesis COOP.
Hypothesis NO-COQP is, however, consistent with our observation.

This observation is also supported by Cassar (2002) who finds similar decline in coop-
eration in circles and also in perturbed circles where some connections between neighbours

are broken and replaced by connections to distant players.

4.1.2 A simple learning model

In this section we start investigating hypothesis SYMyg and ASYMyg and study players’
learning and imitation behaviour. Since we can not directly observe the learning process
but only its outcomes, i.e. players’ choices, we have to use a statistical model of the
learning process. The logit model is perhaps the most common model that allows us to
describe discrete choices between two alternatives, here C' and D. Own payoffs from C' and
D will be called u®°"™ and u®°"", respectively. If a player does not cooperate in a given

c,own

period t the value of can not directly be determined. In this case we recursively use
uy ™™ = uy°7" until we reach a period where the player actually cooperated. In a similar
way we define u®°te and u®ether We define recursively u}” := u, for s € {C, D} and
i € {own, other}.

In line with equation (1) we use differences in payoffs of C' and D as explanatory

c,own d,own
t

variables of our model. A := w; —u is the difference between payoff from

cooperation and payoff from non cooperation as experienced by the player in period t.
Agther . — g eother g dother 4o the difference between payoff from cooperation and payoff
from non cooperation as experienced by player’s neighbours in period t. To allow for some
inertia we include the current choice ¢; which we code as 1 if the player cooperates today,

and 0 otherwise. In section|4.1.6 we will study a richer model with more parameters which

10When calculating levels of standard deviations and levels of significance we have to take into account
that observations within any session may be correlated. We can, however, assume that covariances
of observations from different sessions are zero. Covariances of observations from the same session are
replaced by the appropriate product of the residuals (Rogers 1993). We will use this approach throughout
the paper to calculate standard errors.

HBonacich et. al. (1976) studied cooperation within groups of 3, 6, and 9 players in a game where
cooperation is less attractive than in our game. They found levels of about 30% of cooperation in groups,
which is close to the initial levels results in our experiment.

Fox and Guyer (1977) used a non-linear payoff scheme where sometimes cooperation was more attractive
than in our game. They found more cooperation (around 50%) in a game with groups of 3 and 12 players.

13



allows players to treat C' and D in an asymmetric way. Let us first estimate

Ple) = L(Bo+ B+ Y. FA)) (2)

i€{own,other}

where L(z) = €”/(1+¢€"), ¢i11 is 1 if a player cooperates tomorrow, and 0 otherwise. The
factor Bown captures, hence, reinforcement, (uiner measures the amount of imitation, [.
measures inertia, and 3y a general inclination to play C'. The two factors, Bown and Botper,
hence, allow us to measure different degrees of imitative behaviour. The relationship to

the copy-best rule will be investigated in the next section.

4.1.3 How to estimate learning behaviour

When estimating the above model we have to take into account correlations within vari-
ables. The dependent variable c¢;y; influences payoffs in the next period and, hence, the
explanatory variables A9¥? and AYh. The AR(1) process can be estimated with the help

1.12 Before we come to the results of our experiments

of a GEE population-averaged mode
we want to do two things. We want to convince the reader that the GEE estimator is
unbiased. Furthermore we show the results of the estimator when the population does
not follow the model described in equation (2) but instead a copy-best imitation process
as assumed by Axelrod (1984), Eshel, Samuelson, and Shaked (1998), Nowak and May
(1992), and others.

In order to find out whether the GEE estimator is indeed unbiased in our context
we did a Monte Carlo study which was based on our laboratory setting. A circle of
18 players starts from a random configuration where each player chose with probability
0.36 to cooperate. This corresponds to the initial behaviour in our experiments. In the
following 80 periods each player chooses C' with a probability given by equation (2). Based
on six of these simulations we run a GEE estimate as described above and also a simple
logit estimate. We repeat this procedure 100 times and take averages. These averages are
shown in figure 4 for five different parameter vectors. We see that for both methods, GEE
and logit, the estimates coincide with the true coefficients — the estimator is unbiased.
The number of periods (80) seems to be sufficiently large to counter the possible bias of
the AR(1) process. In the following we will present results from GEE and logit estimates

in our graphs. For simplicity we will present only the GEE estimates on our tables.

12See Liang and Zeger (1986). We use as a link function the logistic function and specify c;11 to be
binomially distributed.

14
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The behaviour of a simulated populations is based on one of five different pa-
rameter vectors: (B, Bc, SO, 3°hery € {(—1,0,.09,.03),(-1,0,.07,.03), (—1,0,.09,.05),
(—1,0,.07,.05), (—.6,2.6,.04,.07)}. The figure shows the true value of the parameter and
the estimated value of the parameter. The average GEE estimates are shown as circles,
the average logit estimates are shown as pluses. Next to the averages we show the true
coefficients Bown, Gother Of the simulation.

FIGURE 4: Results of Monte Carlo study — players using a logistic function

4.1.4 Where is copy-best in our learning model

As said above, we are interested in a comparison with the more theoretical literature
(Axelrod (1984), Eshel, Samuelson, and Shaked (1998), Nowak and May (1992), and
others). This literature assumes that players use a copy-best imitation mechanism when
they update their strategy. In each period they determine the strategy with the highest
payoff in their neighbourhood and follow this strategy in the next period. If payoffs of
C and D are the same they stick to their current strategy. What would a GEE or a
logit modes estimate if confronted with such a behaviour? To answer this question we
use again a Monte Carlo study. We simulate the same situation as in the experiment, a
circle of 18 players who play for 80 periods. Players follow the learning rule that is used
by Eshel, Samuelson, and Shaked (1998).

In order to narrow down the properties of this process Eshel, Samuelson, and Shaked
(1998), Kirchkamp (2000) Nowak, Sigmund, and El-Sedy (1993), and others use muta-
tions, i.e. they assume that with a small probability p players make a mistake and choose
the opposite strategy. For each mutation rate we simulate 1000 groups of six circles and
present average estimates of the coefficients of equation (2) in figure 5!

The two curves in the left part show the result of our Monte Carlo study. Each point in

each curve corresponds to one mutation rate. Mutation rates are shown next to the curve.
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The curves in the left part of the figure show results of our Monte Carlo study. They show
how a GEE or a logit estimate perceives copy-best behaviour (mutation rates are shown

next to the curve).

For comparison our experimental results are shown in the same figure (Exp-Circle... and
Exp-Group...). Most of the experiments can be found below the 45° line.

F1GURE 5: Copy best versus experimental results



coeff. from Learning own and others’ payoff in circles

eq. (2) I6; o t Py 95% conf. interval
Be —.1527977 | .1097514 | —1.39 | 0.164 | —.3679064 | .062311
govm .0893514 | .0089972 | 9.93 |0.000 | .0717171 | .1069857
[gother 0302698 | .0121571 | 2.49 |0.013 | .0064423 | .0540972
Bo —1.079484 | .067418 | —16.01 | 0.000 | —1.211621 | —.9473476
coeff. from Learning from own and others’ payoff in groups
eq. (2) g o t Py 95% conf. interval
B 2.585381 |.1193796 | 21.66 |0.000 | 2.351402 | 2.819361
govm .0442708 |.0097167 | 4.56 |0.000 | .0252265 | .0633152
[gother 0664513 | .0192851 | 3.45 |0.001 | .0286532 | .1042494
0o —1.622957 | .1131753 | —14.34 | 0.000 | —1.844777 | —1.401138

TABLE 4: GEE population-averaged estimation of equation

A mutation rate of p = 0.5 corresponds to random behaviour — half of the time players
choose the right strategy, and half of the time they choose the wrong strategy. Thus, both
coefficients By, and Goiner are estimated to be zero. For smaller mutation rates behaviour
is more structured. We see that for all mutation rates the GEE and the logit estimate are
above the 45° line, i.e. Bother > Bown- TLhe intuition is that when calculating the average
payoff of a strategy all players are treated equally. The payoff experience of the learning
player has a smaller impact than the experiences of the four neighbours.

Finding Bother > Bown 18, hence, what we should expect in a world where players use
a copy-best rule, i.e. where hypotheses SYMyg and SYMgrr hold. Finding Gother < Bown
would be evidence for ASYMyg.

We did similar simulations for groups. As we have already seen in section|2 cooperation
dies out quickly in the group setting. Therefore estimated coefficients are independently
of the mutation rate very close to zero. In figure[5/estimation results could not be visibly

distinguished from the origin.

4.1.5 Learning in the experiment

Anticipating briefly our result figure |5/ includes also an overview of our experiments.
Average coefficients for 8°"® and £°"" are shown next to a label of the experiment.
Regardless whether we look at the GEE or the logit estimate, most of our experimental
results are below the 45-degrees-line, i.e. %" > 3°%hr This is in stark contrast to the
copy best behaviour described above.

The experiments that we described so far are the ones labelled “Exp-Circle” and “Exp-
Group” in figure Detailed estimation results are shown in table The value of
Bown 1s significantly larger than Suter (X*(1) = 10.49, P52 = 0.0012). This means that

17



coeff. from Learning from C and D in circles
eq. (3) 16} o t Py 95% conf. interval
Be —.3078639 | .16064 | —1.92 | 0.055 | —.6227125 | .0069846
[ 0909994 | .0108732 | 8.37 ]0.000 | .0696884 | .1123104
phown —.0849679 | .015454 | —5.50 | 0.000 | —.1152572 | —.0546786
[peother 0462106 |.0139529 | 3.31 |0.001 | .0188635 | .0735577
[Fhother —.0134582 | .0192408 | —0.70 | 0.484 | —.0511695 | .024253
Bo —1.257075 | .0987834 | —12.73 | 0.000 | —1.450687 | —1.063463
coeff. from Learning from C' and D in groups
eq. (3) I} o t Py 95% conf. interval
Be 2.657546 | .1513503 | 17.56 | 0.000 | 2.360905 | 2.954187
[ 0725666 |.0131783 | 5.51 |0.000 | .0467377 | .0983955
phown 0152466 |.0168734 | 0.90 |0.366 | —.0178246 | .0483179
eother 1177859 | .022863 | 5.15 ]0.000 | .0729753 | .1625966
[Fhother —.1191031 | .024038 | —4.95 | 0.000 | —.1662168 | —.0719894
Bo —1.822549 | .1188607 | —15.33 | 0.000 | —2.055512 | —1.589586

TABLE 5: GEE population-averaged estimation of equation

there is more reinforcement than imitation. In groups Gown < Bother but the difference is
not significant (x*(1) = 0.82, Ps,2 = 0.3663). Players living in a spatial structure are less
sensitive to their neighbour’s payoffs than one in a non-spatial one. This is consistent with
hypothesis ASYMyg. In a spatial structure a neighbour’s success with a strategy may
be due to this neighbour’s neighbourhood and might not apply to the learning players.
We can, hence, reject hypothesis SYMyg in the spatial structure (in circles) but not in
groups.

Remember that in section 2 we explained that survival of cooperation in a spatial
structure crucially depends on imitation of neighbours. Finding only a small amount of
cooperation in circles in section [4.1.1] should, hence, not come as a surprise, given that

imitation plays only a limited role (Sother < Bown)-

4.1.6 Learning and reciprocity

When we estimated equation 2/ we made the simplifying assumption that players are
equally sensitive to payoffs from the two strategies C' and D. Equation [3 describes an
approach which allows for different sensitivities.

P(cii1) = L(Bo + Becr + B%ug")

>

s€{C,D}
i€{own,other}

(3)

Results are shown in table 5 and are again in line with hypothesis ASYMyg. The left
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(Beeovn, 3down) (see table[5) are displayed as e, (Be0ther gdother) are displayed as o. The
left part of the figure shows the original coefficient, the right part uses the transformation
A= 3ot — 34t and pf = B9 4+ % (see table [6).

FIGURE 6: Estimation of equation for the baseline treatment

part of figure |6/ shows the estimated coefficients graphically.

To make the interpretation of the coefficients easier we use a simple translation. We
will call a player who is characterised by 53¢ = —3¢ a learning player. Such a player acts
according to hypothesis SYMgrgr. Estimates of 3¢ and 3¢ for such a player should be
found on the dotted line in the left part of figure 6.

Player might, however, not only learn but might understand the prisoners’ dilemma
nature of the game and behave in a reciprocating way. We will call a player reciprocating
if the player chooses C' more frequently when payoffs of either C' or D are high, since
high payoffs indicate the presence of other cooperators. Such a player is characterised by
points on the dashed line in the left part of figure 6.

As a measure for learning we take, hence, A’ := 3%* — % for i € {own,other}. As a
measure for reciprocity we take p' := 3¢ + 3% for i € {own,other}. If a player learns
as assumed in hypothesis SYMgrr then 0 < 3% = —3% or, in other words, A\’ > 0 and
p' = 0 (this was the implicit assumption when we estimated equation (2)). If, however, a
player is only reciprocating 0 < 3% = 3% or A = 0 and p° > 0. Characteristics of these
expressions are shown in table |6 and in the right part of figure 6.

We first test the simplifying assumption that we made above in section 4.1.2. When we
estimated equation (2) we implicitly assumed hypothesis SYMgrr, i.e. players are equally
sensitive to payoffs from the two strategies C' and D. Then we should have in equation (3)
Vi € {own,other} : 3% = —3%¢ or, in our transformation, we should have p = 0. In the
left part of figure |6/ estimates should be on the dotted line. We use a Wald test to jointly
test Vi € {own, other} : p' = 0 and find for circles (x*(2) = 6.01, P.,2 = 0.0496) and for
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coeff. from Learning and reciprocity in circles
eq. (3) 16 o z P, | 95% conf. interval
Aovn 1759673 | .018847 | 9.34 | 0.000 | .1390278 |.2129068
pon 0060315 |.0189445| 0.32 [0.750 | —.031099 |.0431621
other 0596688 | .026113 | 2.29 |0.022| .0084883 |.1108494
pother 0327524 |.0211634 | 1.55 |0.122 | —.0087272 | .0742319
coeff. from Learning and reciprocity in groups
eq. 16 o z P..; | 95% conf. interval
Aovn 056732 1.0199049 | 2.88 |0.004 | .0183071 |.0963329
o 0878133 | .0228156 | 3.85 [0.000 | .0430956 | .132531
\other 2368891 | .042429 | 5.58 |0.000 | .1537298 |.3200483
pether —.0013172 | .0200217 | —0.07 | 0.948 | —.0405591 | .0379247

TABLE 6: Learning A and reciprocity p as estimated in the GEE estimation of equation
(3) using the transformation A’ := 3%¢ — 3% and pi := g% 4 F&

groups (x*(2) = 27.82, P.,» = 0.0000) a significant amount of asymmetric learning. So,
while the simplifying approach from section [4.1.2 may help us gain a first insight, it seems
justified to abandon hypothesis SYMgrr and to introduce p as an additional dimension,
allowing for differences in learning from C' and D.

Let us next compare hypotheses SYMyp and ASYMyg. Following hypothesis
ASYMyg we should expect relatively more reinforcement and less imitation in spatial
structures (in circles). In groups we should expect the opposite. Our data confirms this
hypothesis. In circles we find Ao > \ether (y2(2) = 8.60, P2 = 0.0034) while in groups
AoWR < \other (42(2) = 10.86, Ps,2 = 0.0010).

This explains why we do not find more cooperation in circles. Players put relatively
more weight on their own experience the more spatial a structure becomes. As a result
the mechanism that would otherwise support growth of cooperation in a spatial structure

ceases to work.

4.2 A treatment with some computerised players

In section 2| we explained how imitation of successful neighbours supports cooperation
in a spatial environment. This argument relies on the assumption of an initial cluster
of cooperators of sufficient size — with our payoffs we need at least five neighbouring
cooperators. But how does such a cluster appear? An evolutionary game theorist might
argue that we only have to wait long enough until such a cluster appears with a mutation.
Sessions in our experiment, however, last only for a limited number of periods, and if the
cooperative cluster does not appear during this time cooperation might never get started.

To give cooperation in circles the best possible conditions we therefore introduced a
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The five white dots indicate the position of computerised players that always play C. The
remaining dots indicate the position of the human players.

F1GURE 7: The structure of circles with some computerised players

cluster of five computerised players into the circle. In figure 7| players xs, x1, o, Y1, Yo
are played by the computer and cooperate in every period.'® The remaining players are
human which obtain the same information as in the above treatment (section[3). Players
X3, T4, Y3, Y4 do not know that their neighbours are computers. The detailed behaviour of

the human players is shown in appendix

4.2.1 Stage game behaviour in circles with some computerised players

Figure [8 shows the frequency of cooperation depending on the distance to the comput-
erised players. Players with a smaller distance to the computerised players cooperate
significantly more.'* The four players which are closest to the computerised players and
who obtain information about payoffs of these players (3, 24, y3, y4 in figure(7) cooperate
more frequentlyJE The average frequency of cooperation in the circle with some comput-
erised players is slightly, but not significantly, higher than in the baseline treatment.'¢ If
we drop players x3, x4, Y3, Y4 the average frequency of cooperation in circles with comput-

erised players is even slightly (but not significantly) lower than in the baseline treatment.

I3Participants were told that they would play a game with 18 agents sitting round a circle. They could
see that only 13 players were present in the laboratory but in our experiment no participant missed the
other five.

We ran four sessions with 13 players and 5 computerised agents. We conducted two more sessions
where only 10 players showed up (again with 5 computerised agents). We pool the data from these two
sessions with the other four.

1A Cuzick-Altman test finds z = 2.55, P5|,; = 0.01.

153 t-test finds t = —2.68, Py = 0.044, a one sample Wilcoxon signed-rank test finds z = 2.201,
Py, = 0.0277.

16 A t-test finds t = 1.06, Py; = 0.303, a two-sample Wilcoxon rank-sum test finds z = 0.702,
Py, = 0.4829.
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FicUreE 8: Cooperation in circles with some computerised players depending on the
distance to the computerised players
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The line “circle with some computerised players” shows the relative frequency of all hu-
man players, the line “circle with some computerised players, center” excludes players
3, T4,Y3, Y4 Who set next to the computerised neighbours.

FiGURrE 9: Cooperation in circles with some computerised players

We see, hence, that there is some imitation going on, but, as we will see in the next
paragraph, this is not enough to increase overall cooperation substantially.

Figure!9 shows the development of cooperation in the baseline treatment and in circles
with computerised players. For the circles with some computerised players we show two
lines. The upper one shows all participants, including those that have immediate comput-
erised neighbours. The latter cooperate more than those who are farther away from the
cluster of cooperators. When we exclude them, we obtain the lower line. If we compare
the average frequency of cooperation in circles with some computerised players with the
one in groups we find no significant difference (a t-test finds ¢ = 0.68, P~ = 0.507, a
two-sample Wilcoxon rank-sum test finds z = 0.589, Ps|. = 0.5557).
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coeff. from Learning in circles with some computerised players
eq. (3) 16} o z P 95% conf. interval
Be —.2013955 | .0923885 | —2.18 | 0.029 | —.3824737 | —.0203173
govn 1071798 | .0089123 | 12.03 | 0.000 | .0897119 | .1246476
[Fother 0679119 |.0080964 | 8.39 |0.000 | .0520432 | .0837806
Bo —.7267049 | .0546413 | —13.30 | 0.000 | —.8337999 | —.6196098

TABLE 7: GEE population-averaged estimation of equation (2) for circles with some

computerised players

coeff. from || Learning from C' and D in circles with some computerised players
eq. (3) 16 o z P, 95% conf. interval
Be —.6312252 | .128256 | —4.92 | 0.000 | —.8826023 —.379848
g 1071357 | .0111059 | 9.65 | 0.000 | .0853685 1289029
pown —.1061983 | .0124075 | —8.56 | 0.000 | —.1305165 | —.0818801
eother 0844496 |.0114302 | 7.39 |0.000 | .0620468 1068523
[pdother —.0336295 | .0134328 | —2.50 | 0.012 | —.0599573 | —.0073016
Bo —1.074731 | .1057231 | —10.17 | 0.000 | —1.281945 | —.8675178

TABLE 8: GEE population-averaged estimation of equation (3) for circles with some
computerised players

To summarise: even when we give players in circles the best possible starting conditions
we do not find support for hypothesis COOP — players still do not cooperate more in

circles than in groups.

4.2.2 Learning in circles with some computerised players

Theoretically we do not see any reason why learning behaviour in the treatment with
some computerised players should differ from learning in the baseline treatment. This
Tables [7, 8, [9, and figure [10/ show GEE estimates

for circles with some computerised players similar to tables 6 for circles from the

is confirmed by our estimations.

baseline treatment.  Also in circles with some computerised players we find A% > )other

(x3(2) = 11.82, P.,» = 0.0006).

4.3 A treatment with information about the payoff matrix

The treatments described in sections 4.1 and where designed to disentangle imitation
from learning from own experience (reinforcement). Our focus was on learning. Indee%

in the estimations of equation (3) learning was significantly stronger than reciprocity.'”

'7A joint test of Vi € {own,other} : \* = p' yields in circles x*(2) = 75.60, P~,2 = 0.0000 and in
groups x*(2) = 35.51, P52 = 0.0000.
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coeff. from || Learning and reciprocity in circles with some computerised players
eq. (3) 16} o z P 95% conf. interval
Aovn 213334 | .0178997 | 11.92 | 0.000 | .1782511 .2484168
own .0009374 | .0153027 | 0.06 | 0.951 | —.0290554 .0309302
other 118079 | .0163523 | 7.22 | 0.000 | .086029 150129
pother .0508201 | .0188356 | 2.70 | 0.007 | .013903 0877373

0.05 T

0

0.05

0.15

TABLE 9: Learning A\ and reciprocity p as estimated in the GEE estimation of equation
for circles with some computerised players

In addition to the baseline treatment that is shown in figure[6 we show here (larger than in

figure[6) estimates for circles with computerised cooperators (circles coop). (3¢°Wn, gd-own)
are displayed as o. We use the transformation \* :=

" — % and pt := 3% 4 %t See also table 9] for circles with computerised cooperators
and table[6] for the baseline treatment.

are displayed as e, (

ﬁc,other ﬁd,other)
)

FIGURE 10: Estimation of equation (3) with computerised cooperators
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History
Your strategy

and gains are
[10] |[20] [15] (14 9

The table shows payoff information as seen by player 1 from table [2

Round your neighbours received

TABLE 10: Example of payoff representation in the detailed information treatment

Still, reciprocity might have some impact. In the discussion of tables [6 and 9/ and in
figure 16/ we found that reciprocity is small in circles but larger in groups. One reason
for this difference might be that in groups participants of the experiment understand the
prisoners’ dilemma nature of the game more easily despite the fact that participants do
not have access to the payoff matrix of the game. Having understood that a game is a
prisoners’ dilemma allows players to analyse the game strategically and to rely less on
imitation or reinforcement.

In the current section we want to better understand the influence of reciprocity. We
study a treatment where players know the payoff matrix of the game as shown in table[1]
i.e. they are able to see that they are playing a prisoners’ dilemma. Bosch-Domenech and
Vriend (2003) show in a Cournot game that the amount of imitation is not affected by
the available information. We will see below that in our setup the available information
affects the degree of imitation considerably.

We will call the treatment the treatment with detailed information. Together with the
payoff matrix we present the information during the course of the session as shown in
table 10l Players do not see average payoffs, as in sections 4.1/ and [4.2 but payoffs of each
individual player. We actually run this treatment before the other treatments mentioned
above. At this time we wanted to present payoffs in the different rounds (table in a
way that is similar to the presentation of payoffs of the game (table [I). This means that
payoffs in the treatment with detailed information are presented not in exactly the same
way as they are presented in the other treatments. However, we think that the difference
is only small and should not affect the results.

Consider player 1 from table |2/ who has two neighbours with action C' and two other
neighbours with D. Information about payoffs in this round is presented as shown in table
10. Player 1’s own payoff is shown as , and displayed next to the player’s own action C'.
The player has two neighbours with action C' and payoffs and respectively. The
two other neighbours choose action D and receive payoffs 14 and ‘9. Payoffs obtained

with either C' or D are displayed in different colours in the experiment. The payoffs are
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FI1GURE 11: Frequency of cooperative players over time in the detailed information and
in the baseline treatment

shown in the rightmost column and ordered from highest to lowest. Thus, it is not obvious

to the player which of the player’s neighbours has chosen a certain action and received a

certain payoff.

4.3.1 Stage game behaviour in the detailed information treatment

In figure [11 we show the relative frequency of cooperation in the detailed information
treatment as a solid line for circles and as a dotted line for groups. For comparison the
figure also shows results for the baseline treatment with dashed lines.

With detailed information we find significantly more cooperation than without detailed
information in circles and also in groups.!® However, the increase in the frequency of

cooperation is not the same in the two structures. While without detailed information

8For circles we find in a t-test ¢t = 2.95, Py = 0.018, in two-sample Wilcoxon rank-sum test we
find z = —1.960, Ps ;| = 0.0500. For groups we find in a t-test t = 3.65, P5 ;) = 0.002, in two-sample
Wilcoxon rank-sum test we find 2z = —2.694, P, = 0.0071.
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coeff. from Learning own and others’ payoff in circles
eq. (3) 16} o z P 95% conf. interval
B 3.019047 | .0658539 | 45.84 |0.000 | 2.889976 | 3.148119
govn 0497975 |.0061767 | 8.06 |0.000 | .0376913 | .0619036
[gother 0139596 | .0079059 | 1.77 |0.077 | —.0015357 | .0294549
Bo —1.888248 | .0564207 | —33.47 | 0.000 | —1.99883 | —1.777665
coeff. from Learning from own and others’ payoff in groups
eq. (3) I} o z Py 95% conf. interval
Be 2.560402 |.0862198 | 29.70 |0.000 | 2.391414 2.72939
govn 0294385 | .0065031 | 4.53 | 0.000 | .0166926 | .0421844
[gother —.0839884 | .015045 | —5.58 | 0.000 | —.113476 | —.0545007
Bo —2.239785 | .1129711 | —19.83 | 0.000 | —2.461205 | —2.018366

TABLE 11: GEE population-averaged estimation of equation (2) when detailed informa-
tion is given

in section 4.1.1 we did not find a significant difference between circles and groups we
find with detailed information more cooperation in groups than in circle@, i.e. an even
stronger contradiction of hypothesis COOP than what we found above. A reason might
be that in this treatment learning, which supports COOP in circles, is relatively less

important and reciprocity becomes more important.

4.3.2 Learning and reciprocity in the detailed information treatment

Similar to the estimations in sections [4.1.5 and 4.2.2 we estimate again equations and
(3). Results are shown in tables 11, 12,13 and in figure 12.  Let us skip tables 11 and
12 and concentrate on table and figure [12. Not only in the baseline treatment, also

with detailed information players learn more from their own experience in circles. In

contrast to the baseline treatment players learn more from their own experience in groups
tooJ;
In the treatment without detailed information, most reciprocity terms p were not
significantly different from zero. Now, in the treatment with detailed information, they
areJ; If reciprocity plays a relatively larger role in this treatment, hypothesis COOP,
which is based on learning, does not hold.

In table [13 and figure [12]| we also find two coefficients with unexpectedly negative

signs. In groups with detailed information p°™ and A\°"*" are both negative. Technically

9In a t-test we find t = 2.89, P~; = 0.006, in two-sample Wilcoxon rank-sum test we find z = 1.715,
P., = 0.0432.

20Testing A\ > A\other yields a x? = 18.45, P~ 2 = 0.0000.

2 Testing Ao > A\°ther yields a y? = 27.80, P~,2 = 0.0000 in groups.

2242 = 3.38, P > = 0.0659 in circles, Y2 = 32.67, P> =0.0000 in groups.
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TABLE 12: GEE population-averaged estimation of equation (3) with detailed informa-

tion

TABLE 13: Learning A and reciprocity p as estimated in the GEE estimation of equation

coeff. from

Learning from C' and D in circles with detailed information

eq. (3) 16} o z P 95% conf. interval
B 2.558246 | .0968281 | 26.42 | 0.000 | 2.368467 | 2.748026
[ 0854751 |.0079583 | 10.74 |0.000 | .0698772 | .1010731
[FLown —.0135855 | .0085466 | —1.59 | 0.112 | —.0303365 | .0031655
[Feother 0158278 |.0090937 | 1.74 10.082 | —.0019956 | .0336512
[Fhother 0125569 |.0130059 | 0.97 |0.334 | —.0129342 | .0380479
Bo —2.465581 | .0916312 | —26.91 | 0.000 | —2.645175 | —2.285987
coeff. from || Learning from C' and D in groups with detailed information
eq. (3) 16} o z P 95% conf. interval
B 1.662233 | .1150202 | 14.45 | 0.000 | 1.436797 | 1.887668
[ 009631 | .0094656 | 1.02 |0.309 | —.0089213 | .0281833
phown —.061498 | .0111853 | —5.50 | 0.000 | —.0834207 | —.0395752
[Feother —.0039144 | .0175425 | —0.22 | 0.823 | —.038297 | .0304682
[Fhother 1197077 | .0173654 | 6.89 | 0.000 | .0856721 | .1537434
Bo —2.278528 | .1198936 | —19.00 | 0.000 | —2.513516 | —2.043541

coeff. from || Learning and reciprocity in circles with detailed information
eq. I} o z P, 95% conf. interval
Aovn .0990606 |.0123706 | 8.01 |0.000 | .0748148 | .1233065
po 0718897 |.0109419 | 6.57 |0.000 | .0504439 | .0933355
Nother 003271 | .0168562 | 0.19 | 0.846 | —.0297666 | .0363085
pother 0283847 | .0148177 | 1.92 |0.055 | —.0006576 | .0574269
coeff. from || Learning and reciprocity in groups with detailed information
eq. (3) 16} o z P 95% conf. interval
Aovn 071129 | .013689 | 5.20 | 0.000 | .044299 0979589
po —.051867 |.0155572 | —3.33 | 0.001 | —.0823585 | —.0213754
\other —.1236221 | .0312888 | —3.95 | 0.000 | —.184947 | —.0622973
pether 1157934 | .0154792 | 7.48 ]0.000 | .0854546 | .1461321

with detailed information
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In addition to the baseline treatment that is already shown in figure [6] (table [6) we show
here also with dotted lines the estimation for the treatment with detailed information (table
13). (peovn, gdowny are displayed as e, (3%°ther) gdother) are displayed as o. We use the
transformation A’ := 3% — 3% and p* := B + g0,

FIGURE 12: Estimation of equation for the treatment with detailed information

ﬁd,other

the negative Ayher in groups results from a large value of , i.e. players cooperate

more when average payoffs of Ds are large. Stronger reciprocity might be a reason, which

should, a priori, affect geother

in the same way. However, since there are more Ds than
C’s in a neighbourhood, Ds average payoffs might be considered more reliable information
and, therefore, 34°""*" might be larger. Another reason might be that participants do
not seem to react linearly in this treatment. If a certain level of cooperation is exceeded
players stop reciprocating. Whatever the reasons for these coefficients are, in any case we
should be careful not to over-stretch the interpretation of our simple learning model in

the group case with detailed information.

4.4 Learning how to learn

In the discussion in the previous sections we always assumed that learning and reciprocity
were constant over time. In figure 13 we see that changes over time do not follow an
obvious pattern. The figure shows results of estimating the GEE population-averaged
model of equation (3) for subsets of 10 adjoining periods of all experiments without
detailed information. To simplify the figure we show > own other} A as an indicator for
learning and ;¢ fown other} p'. All major results that we found above seem to hold during

the whole experiment. Trends, if they can be found at all, are weak and not significant.
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without detailed information with detailed information

—— learning circle o reciprocity circle —— learning circle o reciprocity circle
————learninggroup reciprocity group ————learninggroup reciprocity group

0 20 40 60 80 0 20 40 60
time time

i : i
The figure show } ;¢ (oun other} A as & measure for learning and 3, ¢ (oum othery £° S @ mea-
sure for reciprocity.

FI1GURE 13: Learning and reciprocity over time

5 Conclusion

In this paper we have tried to find out how players learn and how their learning behaviour
depends on the heterogeneity of their environment. In particular we compared actual
learning behaviour with copy-best learning, which is a common model of learning in the
literature. We have seen that copy-best learning is characterised by a large amount of
imitation and a smaller amount of reinforcement. Learning of human players, in particular
in heterogeneous structures, does not fit this description. Players do imitate sometimes,
however, learning from own experience has a stronger influence.

When players are in a homogeneous environment (as they are in our group treatment)
then imitation plays a relatively larger role as compared to a heterogeneous environment
(as in our circle treatment). This is interesting for the literature that builds upon imitation
in local interaction models to explain cooperation. This literature explains very elegantly
how local interaction supports cooperation in an evolutionary model. The argument,
however, depends substantially on imitation. If, as we find in our experiments, there
is only a small amount of imitation in particular in spatial settings, cooperation breaks
down.

Also the available information affects the amount of imitation in an intuitive way. The
more information is available the less players rely on imitation and the more reciprocity

plays a role. Given that in other games information is not affected by information (Bosch-
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Domenech and Vriend 2003) complexity of the game might be a moderating factor. In the
fairly complex game of Bosch and Vriend players might disregard information altogether,
always relying on imitation. In simpler games, like the prisoners’ dilemma, information,
if available, may be helpful and displaces imitation.

There are other questions that we had to leave aside. The development of learning
over time (see figure[13) should be further explored. Also, disentangling of the parameters
of our regression into learning and reciprocity effects was helpful in the analysis but lead
to sometimes unexpected coefficients. Given the sheer number of coefficients that we
estimate this may be hardly surprising, still, we feel that more effects than learning

through reinforcement, imitation and reciprocity might be at work here.
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A List of Sessions

Overview:
Number of sessions in different treatments

information. . .
detailed | less
5 computerised cooperators

group 9110
circle 51 5|6
Parameters of each session:
: . computerised number of
structure | information
cooperators players
1. | Group baseline info 0 5
2. | Group baseline info 0 5
3. | Group baseline info 0 5
4. | Group baseline info 0 5
5. | Group baseline info 0 5
6. | Group baseline info 0 5
7. | Group baseline info 0 5
8. | Group baseline info 0 5
9. | Group baseline info 0 5
10. | Group detailed info 0 5
11. | Group detailed info 0 5
12. | Group detailed info 0 5
continued on next page
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continued from previous page
. . computerised number of
structure | information
cooperators players
13. | Group detailed info 0 5
14. | Group detailed info 0 5
15. | Group detailed info 0 5
16. | Group detailed info 0 5
17. | Group detailed info 0 5
18. | Group detailed info 0 5
19. | Group detailed info 0 5
20. | Circle baseline info 0 14
21. | Circle baseline info 0 18
22. | Circle baseline info 0 18
23. | Circle baseline info 0 18
24. | Circle baseline info 5 13
25. | Circle baseline info 5 10
26. | Circle baseline info 5 13
27. | Circle baseline info 5 10
28. | Circle baseline info 5 13
29. | Circle baseline info 5 13
30. | Circle detailed info 0 18
31. | Circle detailed info 0 18
32. | Circle detailed info 0 18
33. | Circle detailed info 0 18
34. | Circle detailed info 0 18

B Raw data

In the following graphs each line represents the actions of a player from period 1 to period
80. Cooperation is shown as [J, non cooperation as ® . Neighbouring lines correspond to
neighbouring players in the experiment. In all treatments without computerised coopera-
tors (sections B.4/to[B.2) the last line of each block of lines is in circles always a neighbour
of the first line of the same block. In these sections the display of circles is always rotated

such that least cooperative players are found in the first and the last lines.

B.1 Circle treatment
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B.2 Group treatment
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In the display of the circles the five computerised cooperators are not displayed. Their
location is on top of the first line and below the last line of each block. The two top lines
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and the two bottom lines of each block are, hence, immediate neighbours of computerised

cooperators.
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C Instructions

C.1 Instructions for the circle treatment without detailed infor-

mation

Please sit down and read the following instructions. It is important that you read them
attentively. A good understanding of the game is a prerequisite of your success.

After having read the instructions you will continue with a little quiz on the computer
screen. There you will be asked questions that will be easy to answer once you have read

the instructions.

You may take notes but you may not talk to each other.

The structure of the neighbourhood

951y1

T2 Yo
T3 Ys
Ty Ya
5 Ys
Te Ye
T Y7
Ty Tg Ys

I1?Jl

X2 Y2
T3 Y3
Xy Ya
Ts Ys
Te Ys
X7 Y7
Tg X9 Ys
Rounds

Your gain depends on your decision and on the deci-
sion of your two neighbours to the left and your two
neighbours to the right. These four neighbours re-
main the same during the course of the experiment.
You are connected through the computer with these
neighbours. We will not tell who these neighbours
are. Similarly your neighbours will not be told who
you are.

In the diagram on the right side your four neighbours
are shown cross-hatched.

Also your neighbours have neighbours. E.g. the neigh-
bours of y, are players vy, y3, y1 and you.

In this experiment you play several rounds. In each round you take a decision. Depending
on your decision and on the decision of your neighbours you receive points that will be
converted to € at the end of the experiment.

Decision

In each round you choose among two decisions. You choose A or B. Your gain depends
on what you have chosen and on how many of your neighbours have chosen A or B.
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This relation between choices and gains is the same for all participants.

If you choose e.g. A, and all your neighbours choose B than you receive the same
number of points as any other person who chooses A while the neighbours of this person
all choose B. All players choose simultaneously, without knowing the decision of the others.

When all players have made their decision we continue with the next round.

Information after each round

In each round your receive information about your gain. Additionally you receive infor-
mation about the decision of your neighbours and their gain.

Round | Your Decision | Your Gain Average gain | Average gain
with A in your | with B in your
neighbourhood neighbourhood

In each row you obtain information about one round. You find your decision and your
gain in the second and the third column.

In the two columns to the right you find the average gain of all your neighbours who
chose A and the average gain for those who chose B. The average gain is the sum of gains
of all neighbours who made a decision divided into the number of these neighbours. Your
own gain is included when calculating average gains.

If nobody in your neighbourhood has chosen A or B this columns will be marked with

43 29

Quiz
Please answer now the questions from the quiz on the computer screen. If you are unsure
how to answer a question, please consult your instructions.

C.2 Instructions for the group treatment without detailed in-
formation

Please sit down and read the following instructions. It is important that you read them
attentively. A good understanding of the game is a prerequisite of your success.

After having read the instructions you will continue with a little quiz on the computer
screen. There you will be asked questions that will be easy to answer once you have read
the instructions.

You may take notes but you may not talk to each other.
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The structure of the neighbourhood

Your gain depends on your decision and on the deci-
You sion of your two neighbours to the left and your two
neighbours to the right. These four neighbours re-
main the same during the course of the experiment.
You are connected through the computer with these
neighbours. We will not tell who these neighbours
are. Similarly your neighbours will not be told who
you are.
In the diagram on the right side your four neighbours
are shown cross-hatched.

X U1

T2 Y2

You

Also your neighbours have neighbours. E.g. the neigh-

T h bours of y, are players x1, x5 , y; and you.

T2 Y2

Rounds

In this experiment you play several rounds. In each round you take a decision. Depending
on your decision and on the decision of your neighbours you receive points that will be
converted to € at the end of the experiment.

Decision

In each round you choose among two decisions. You choose A or B. Your gain depends
on what you have chosen and on how many of your neighbours have chosen A or B.

This relation between choices and gains is the same for all participants.

If you choose e.g. A, and all your neighbours choose B than you receive the same
number of points as any other person who chooses A while the neighbours of this person
all choose B. All players choose simultaneously, without knowing the decision of the others.

When all players have made their decision we continue with the next round.

Information after each round

In each round your receive information about your gain. Additionally you receive infor-
mation about the decision of your neighbours and their gain.

Round | Your Decision | Your Gain Average gain | Average gain
with A in your | with B in your
neighbourhood neighbourhood

In each row you obtain information about one round. You find your decision and your
gain in the second and the third column.

41



In the two columns to the right you find the average gain of all your neighbours who
chose A and the average gain for those who chose B. The average gain is the sum of gains
of all neighbours who made a decision divided into the number of these neighbours. Your
own gain is included when calculating average gains.

If nobody in your neighbourhood has chosen A or B this columns will be marked with

« 7

Quiz
Please answer now the questions from the quiz on the computer screen. If you are unsure
how to answer a question, please consult your instructions.

C.3 Instructions for the circle treatment with detailed informa-
tion

Please sit down and read the following instructions. It is important that you read them
attentively. A good understanding of the game is a prerequisite of your success.

After having read the instructions you will continue with a little quiz on the computer
screen. There you will be asked questions that will be easy to answer once you have read
the instructions.

You may take notes but you may not talk to each other.

The structure of the neighbourhood

a:lyl Your gain depends on your decision and on the deci-
L2 Y2 sion of your two neighbours to the left and your two
L3 Ys neighbours to the right. These four neighbours re-
T4 Ya main the same during the course of the experiment.
You are connected through the computer with these
neighbours. We will not tell who these neighbours
L6 Ye are. Similarly your neighbours will not be told who
L7 Y7 you are.

T8 g Y In the diagram on the right side your four neighbours

are shown cross-hatched.

Ts Ys

xlyl

T Y2
. ’ s Also your neighbours have neighbours. E.g. the neigh-
’ bours of y, are players vy, y3, y1 and you.
Ly Ya
L5 Ys
T Ye
L7 Y7
Ty Tg Ys
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Rounds

In this experiment you play several rounds. In each round you take a decision. Depending
on your decision and on the decision of your neighbours you receive points that will be
converted to € at the end of the experiment.

Decision

In each round you choose among two decisions. You choose A or B. Your gain depends
on what you have chosen and on how many of your neighbours have chosen A or B.
This relation between choices and gains is the same for all participants.
It will be shown on the screen in the form of a table.

Your neighbours play. . .

You play A

You play B ... Your gain ...

All players choose simultaneously, without knowing the decision of the others.
When all players have made their decision we continue with the next round.

Information after each round

In each round your receive information about your gain. Additionally you receive infor-
mation about the decision of your neighbours and their gain.

Round | Your Decision | Your Gain Decisions and gain in your neig-
bourhood, ordered by gain

In each row you obtain information about one round. You find your decision and your
gain in the second and the third column.

On the right side we show for each of your neighbours the decision of the neighbour
and the obtained gain. The ordering of neighbours in this column depends on the gain
in this period. First comes the neighbour with the highest gain, then the one whose gain
was second, etc.. This implies that in each period a different person can be the first in
the right column.

Quiz
Please answer now the questions from the quiz on the computer screen. If you are unsure
how to answer a question, please consult your instructions.
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C.4 Instructions for the group treatment with detailed infor-

mation

Please sit down and read the following instructions. It is important that you read them
attentively. A good understanding of the game is a prerequisite of your success.

After having read the instructions you will continue with a little quiz on the computer
screen. There you will be asked questions that will be easy to answer once you have read

the instructions.

You may take notes but you may not talk to each other.

The structure of the neighbourhood

You

X1

You

X

X2 Y2

Rounds

n

Your gain depends on your decision and on the deci-
sion of your two neighbours to the left and your two
neighbours to the right. These four neighbours re-
main the same during the course of the experiment.
You are connected through the computer with these
neighbours. We will not tell who these neighbours
are. Similarly your neighbours will not be told who
you are.

In the diagram on the right side your four neighbours
are shown cross-hatched.

Also your neighbours have neighbours. E.g. the neigh-
bours of y, are players x1, x5 , y; and you.

In this experiment you play several rounds. In each round you take a decision. Depending
on your decision and on the decision of your neighbours you receive points that will be
converted to € at the end of the experiment.

Decision

In each round you choose among two decisions. You choose A or B. Your gain depends
on what you have chosen and on how many of your neighbours have chosen A or B.
This relation between choices and gains is the same for all participants.
It will be shown on the screen in the form of a table.

Your neighbours play. . .

You play A
You play B

... Your gain ...

All players choose simultaneously, without knowing the decision of the others.
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When all players have made their decision we continue with the next round.

Information after each round

In each round your receive information about your gain. Additionally you receive infor-
mation about the decision of your neighbours and their gain.

Round | Your Decision | Your Gain Decisions and gain in your neig-
bourhood, ordered by gain

In each row you obtain information about one round. You find your decision and your
gain in the second and the third column.

On the right side we show for each of your neighbours the decision of the neighbour
and the obtained gain. The ordering of neighbours in this column depends on the gain
in this period. First comes the neighbour with the highest gain, then the one whose gain
was second, etc.. This implies that in each period a different person can be the first in
the right column.

Quiz
Please answer now the questions from the quiz on the computer screen. If you are unsure
how to answer a question, please consult your instructions.
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