Errors in variables in experimental data Risk and punishment revisited*

Christoph Engel[†] Oliver Kirchkamp[‡]

11th March 2017

We provide an example for an errors in variables problem which is quite common in lab experimental practice but which might often be neglected: In one task participants' attitudes are measured, in another task participants' behaviour is related to this measurement. How should we deal with imperfect measurements of these attitudes?

To illustrate the problem we consider the relation between risk aversion and punishment behaviour. We know that measurements of the attitude towards risk in the lab are often noisy or inconsistent. We show that ignoring this noise or discarding inconsistent observations yields to a quite different estimate of the relation between attitude and behaviour.

Keywords: Risk, lab experiment, public good, errors in variables, Bayesian inference. JEL: C91, D43, L41

1. Introduction

When we run laboratory experiments and when we try to structure the results of these experiments, we sometimes combine two parts of an experiment. In one part of the experiment we measure individual attitudes. These measurements are used to explain behaviour in another part of the experiment. Clearly, one can not assume that these measurements are free of any errors. This presupposes that the measured attitude will play itself out the same way whenever it is elicited and in whichever context it happens to matter. Differential psychology

^{*}Helpful comments by Ioanna Grypari and André Schmelzer on an earlier version are gratefully acknowledged. The data and the methods used in the paper can be found at http://www.kirchkamp.de/research/errorsInVar.html

[†]MPI for Research on Collective Goods, Kurt-Schumacher-Str. 10, 53113 Bonn, engel@coll.mpg.de, +49 228 91416-0.

[‡]University Jena, School of Economics, Carl-Zeiss-Str. 3, 07737 Jena, oliver@kirchkamp.de, +49 3641 943240.

has long cast doubt on this assumption. Traits and attitudes are unlikely to be stable across situations (Ross, Nisbett and Gladwell, 2011). This suggests that attitudes will often only be imperfectly observed in post-experimental tests.

For the econometrician the problem of an explanatory variable that is only imperfectly observed is well known as one of "errors in variables". More technically, if we want to estimate $Y = \beta_0 + \beta_1 X + u$, but we can observe X only with an error, e.g. we observe $\xi \sim \mathcal{N}(X, \sigma_{\xi})$, then estimating $Y = \beta_0 + \beta_1 \xi + u$ with standard OLS provides a biased estimator for β_1 . Already Adcock (1877) mentions the problem of errors in variables. Since then many authors have discussed this problem (see Gillard, 2010, for an overview). Errors in variables are, indeed, acknowledged in surveys in the field (see, e.g., Kimball, Sahm and Shapiro, 2008, who use survey data on risk tolerance). Deficiencies in the maximum likelihood approach to estimate models with errors in variables were pointed out e.g. by Neyman and Scott (1948) and Solari (1969). Lindley and El-Sayyad (1968) and Florens, Mouchart and Richard (1974) have proposed Bayesian inference to overcome these problems. During the last decades Markov chain Monte Carlo methods have become a powerful and accessible tool for Bayesian inference. Thus, the Bayesian approach lends itself particularly well to estimate models with errors in variables. In the frequentist world the problem that we outline below could be described as a generalised multilevel structural equation (Rabe-Hesketh, Skrondal and Pickles, 2004). In this paper we use the Bayesian approach since we think that it makes the problem and its solution particularly transparent.

This brings us to laboratory experiments in economics: Should we worry about errors in variables in the lab? After all, when σ_{ξ} in the above problem is small, the bias will be small, too. Perhaps the situations we are studying as experimental economists are of the latter kind and the problem is more of academic than of practical interest?

To demonstrate that errors in variables do matter for lab data we consider the following example: In one part of the experiment we measure participants' attitudes towards risk with the help of a Holt and Laury (2002) task. In another part of the experiment we use these attitudes to explain reactions to punishment in a public good game. In the Holt and Laury task, 18% of all participants behave "inconsistently", in that they switch more than once between the lottery with the smaller and the lottery with the larger spread. One of the options mentioned by Holt and Laury (2002) and used by many experimentalists, is to simply drop the data from such participants. We show why this solution can be problematic. We discuss a series of alternatives, and show how a joint estimation of both decision processes offers an easy and effective solution. A joint estimation has two advantages: First, one uses the data from all participants, thus avoiding a selection bias. Second, we can estimate, separately for each participant, the precision of the measure for her risk attitude. This allows us to address the errors in variables problem. As our sample demonstrates, results change substantially if one treats the results from the Holt and Laury task as an explanatory variable measured with error.

The remainder of the paper is organized as follows: Section 2 introduces the design of

¹As is standard, participants were not admonished to switch at most once.

²Otherwise one does not estimate the effect of risk aversion on punishing behavior in the population, but the effect of risk aversion on the punishing behavior of only those individuals whose reactions to risky choices are highly consistent.

the example experiment from which the data are taken and that we use to illustrate our methodological point. Section 3 discusses alternative methods for dealing with inconsistency in the measurement of risk attitudes. Section 4 uses simulations to assess the size of the bias due to errors in variables in a more general context. Section 5 concludes.

2. Design of the Example Experiment

In our example we study a four-person repeated public good game with punishment. The experiment was conducted in the Cologne Laboratory for Economic Research in 2012. The experiment was implemented in zTree (Fischbacher, 2007). Participants were invited using the software ORSEE (Greiner, 2004). Of 90 participants 80 were students of various majors with a mean age 25.4. 44% were female. Participants on average earned $15.11 \in (19.82\$$ on the days of the experiment), $14.80 \in$ for active players, and $16.38 \in$ for authorities. The experiment had 3 sessions of 30 participants (6 groups of 4 active participants; 6 passive authorities).

The aim of the experiment is to study the relation between attitudes to risk and the reaction to punishment in a public good game. Fehr and Gächter (2000) show that if participants in a public good game have the possibility to punish each other, contributions in the public good game stabilize at a high level. Engel (2014) shows that social preferences may make punishment effective even if its expected value is so low that a perfectly selfish individual would not be deterred.

In our example we reanalyze data generated for testing the interplay between social preferences and punishment. The data is taken from Engel (2014). In this experiment four (active) participants $i \in \{1,\ldots,4\}$ in group k contribute c_{ikt} in round t to linear public good. A fifth participant α (an authority) has the power to impose a punishment η_{ikt} on each active participant. Profits π_{ikt} of the active participants and $\pi_{\alpha kt}$ of the authority are given by (1) and (2):

Profit of active participant i:
$$\pi_{ikt} = 20 - c_{ikt} + .4 \sum_{i} c_{ikt} - 3\eta_{ikt}$$
 (1)

Profit of authority a:
$$\pi_{akt} = 25 + 20 - \sum_{i} \eta_{ikt}$$
 (2)

The fifth participant gains a fixed period income of 25 tokens. She can use an additional endowment of 20 tokens to punish any of the active group members. Any token not used for punishment she keeps for herself. After the end of the first round, there is a surprise restart with another 10 rounds of the same game. Participants are rematched every period to matching groups of size 10.

In the experiment, punishment authority is vested in a participant. Active participants are matched to one such authority in each period. Active participants are uncertain which punishment policy the authority will be adopting. The only information they have is the experience of having been punished in previous periods. Punishment in the last period is the most vivid experience. It should have the highest salience, and therefore the strongest effect. The more they are averse to risk, the stronger this signal should guide their choices in the subsequent period: risk averse participants loose more utility when punished again.

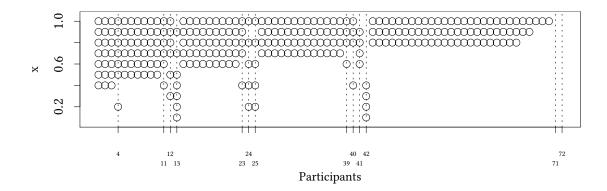


Figure 1: Choices in the risk task

The panel shows choices for each participant: o if the participant chose the lottery with the larger spread and nothing if the participant chose the smaller spread. Vertical reference lines denote participants with inconsistent choices (see 5). Participants are ordered by their risk attitudes, with the more risk seeking participants at the left.

Hypothesis 1 The more a participant is risk averse, the more she increases her contributions to a linear public good after having been punished in the previous period.

After the main experiment, a battery of post-experimental tests is administered. For the purposes of this paper, only the test for risk aversion is of interest. The experiment uses the test introduced by Holt and Laury (2002). Holt and Laury design a task where participants choose between a (safe) lottery with a small spread, $p \cdot 2\$ + (1-p) \cdot 1.6\$$, and a (risky) lottery with a large spread, $p \cdot 3.85\$ + (1-p) \cdot .1\$$, where the probability of the good outcome is $p \in \{.1, .2, .3, ..., 1\}$.

3. How to Deal with an Inconsistent Measure for Risk Attitudes?

In the previous section we have outlined an experiment where for each participant i in group k we (imperfectly) measure risk aversion. We expect punishment in a previous round $\eta_{ik,t-1}$ to stimulate contribution c_{ikt} in the current round. Furthermore we expect that this effect is stronger for more risk averse participants and weaker for more risk loving participants.

3.1. Measuring risk aversion

To test Hypothesis 1, we need for each active participant a measure of her risk aversion. Choices in the risk task for the 72 participants holding the active role are shown in Figure 1. Choices where a participant chose the lottery with the larger spread are denoted with a \circ , choices where the participant chose the lottery with the smaller spread are left blank.

If we assume that preferences for money follow e.g. CRRA, i.e. $u(z) = z^{1-r}$, then the critical value of p^c where participants are indifferent between the more safe and the more risky choice is a monotonic function of their relative risk aversion r. We can then either

describe participants by r or by their critical value of p^c . In the following we will use p_{ik}^c to describe preferences of individual i in group k.

One way to formalise choices in the Holt and Laury task is the logistic model. The probability of a risky choice of individual ik in lottery p could be written as follows:

$$P(\text{risky}_{ik}|p) = \mathcal{L}\left((p - p_{ik}^c) \cdot \sqrt{\tau_{ik}}\right) \text{ with } p \in \{.1, .2, ..., 1\}$$
(3)

Here \mathcal{L} is the logistic function, p describes the probability of the good outcome in the Holt and Laury task, p_{ik}^c is be the critical value where participant ik is just indifferent between the two choices, and τ_{ik} is the precision of the observation. For a perfect measurement of a perfectly consistent decision maker τ_{ik} would be infinitely large. A $\tau_{ik}=0$ would denote a decision maker who choses the more risky alternative always with the same probability, regardless of the value of p. The smaller τ_{ik} , the more likely it is to observe inconsistent choices.

In Figure 1. we have ordered participants from the most risk loving on the left to the most risk averse on the right. Ideally, we should expect that each participant i in group k can be characterized by a single switching point p_{ik}^c such that the following holds:

$$choice_{ik}(p) = \begin{cases} risky & \text{if } p > p_{ik}^c \\ either safe or risky & \text{if } p = p_{ik}^c \\ safe & \text{if } p < p_{ik}^c \end{cases}$$

$$(4)$$

We call a participant i in group k consistent iff

$$\max\{p|\text{choice}_{ik}(p) = \text{safe}\} < \min\{p|\text{choice}_{ik}(p) = \text{risky}\}\}. \tag{5}$$

For a consistent participant a p_{ik}^c can be found such that all choices can be rationalised with Equation (4). Indeed, 82% of the participants in this sample are consistent according to (5). We call a participant *inconsistent* if (5) does not hold, i.e. not all their choices can be rationalised with Equation (4). In Figure 1 vertical reference lines denote participants with inconsistent choices. The choices of 18% of the participants are inconsistent.

A certain amount of inconsistent choices is typical for this test. Some researchers react by using an alternative test that forces consistency. Eckel and Grossman (2008) directly ask participants for the switching point. Depending on the research question, this may be satisfactory. However, by enforcing consistent choices for p_{ik}^c we lose information about the precision τ_{ik} of that choice. Below we will argue that information about this precision may be useful.

Before we do this, let us come to the contributions in the public good game.

3.2. Contributions to the public good

To test Hypothesis 1 we have to explain changes in the contribution to the public good Δc_{ikt} as a function of previous punishment η and risk version p_{ik}^c . We eventually want to estimate the following model:

$$\Delta c_{ikt} = \beta_0 + \beta_\eta \eta_{ik,t-1} + \beta_p p_{ik}^c + \beta_{\eta \times p} \eta_{ik,t-1} \cdot p_{ik}^c + \nu_k + \nu_{ik}' + \epsilon_{ikt}$$
 (6)

 Δc_{ikt} is the change of contribution to the public good of individual i from matching group k at time t. $\eta_{ik,t-1}$ is the punishment received by individual i from group k at time t-1, i.e. the punishment received in the previous period. p_{ik}^c is a measure for risk aversion of individual i from group k. ν_k is a random effect for group k. ν_{ik}' is a random effect for individual i from group k. ε_{ikt} is the residual. In line with Hypothesis 1 we expect the interaction term $\beta_{\eta \times p}$ to be positive.

In the example study, the aim is to explain reactions to punishment as a function of the attitude towards risk. The latter is described as a switching point p_{ik}^c in the Holt and Laury task. In Section 3.3 we comparatively assess four alternative approaches for dealing with inconsistent choices. All four approaches can be used to estimate Equation (6), but all assume that p_{ik}^c could be measured with infinite precision. As a result none of these four approaches addresses the errors in variables problem. In Section 3.4.2 we estimate the decision process determining p_{ik}^c jointly with Equation (6). These approach offer a solution for the errors in variables problem.

3.3. No correction for errors in variables

3.3.1. Drop inconsistent observations (DROP)

This procedure removes from our sample the 18% of the participants which are inconsistent according to (5). In Figure 2 these are the participants which are crossed out by a vertical dashed line. For the remaining 82% of our participants we define the switching point as follows:

$$\hat{p}_{it}^{c,D} = \frac{\max\{p|\text{choice}_{ik}(p) = \text{safe}\} + \min\{p|\text{choice}_{ik}(p) = \text{risky}\}\}}{2}$$
(7)

Figure 2 suggests that inconsistent behaviour could be more likely with risk seeking participants. The DROP procedure might, hence, selectively remove risk seeking participants from the sample. It also does not tell us anything about the precision of p_{ik}^c , i.e. it does not help us to address the errors in variables problem.

3.3.2. Counting the number of safe choices (COUNT)

Holt and Laury (2002) propose to replace the switching point for inconsistent participants by simply counting the number of safer choices. To ease the comparison with the other measures we use the following linear transformation:

$$\hat{p}_{it}^{c,C} = \frac{1}{20} + \frac{1}{10} \sum_{p} [\text{choice}_{ik}(p) = \text{safe}]$$
 (8)

Figure 2 shows the resulting estimates of risk preferences as a thick dotted line. This procedure addresses the selection bias but not the errors in variables problem.

3.3.3. A logistic regression to estimate switching points (LOGIS)

In Equation 3 we have used the logistic model to describe choices in the risk task. We can rephrase this model as follows:

$$P(\text{risky}_{ik}|p) = \mathcal{L}\left(\beta_{0,ik} + \beta_{1,ik}p\right) \text{ where } p \in \{.1, .2, ..., 1\}$$
(9)

The value of p where the $P(risky_{ik}|p) = 1/2$, i.e. where individual i in group k chooses the more risky and the safer lottery with equal probabilities, is our estimated switching point $\hat{p}_{ik}^{c,L}$. It is given by

$$\hat{p}_{ik}^{c,L} = -\hat{\beta}_{0,ik}/\hat{\beta}_{1,ik}. \tag{10}$$

The dashed line in the bottom part Figure 2 shows for each individual the critical value $\hat{p}_{ik}^{c,L}$ obtained with this method.³ As Figure 2 demonstrates, the results obtained with LOGIS are similar to COUNT, except for participants 13 and 42.⁴ The top part of the same figure shows for each individual the coefficient $\hat{\beta}_{1,ik}$. When this coefficient is large then $P(\text{risky}_{ik}|p)$ is either close to 1 or close to 0 for most values of p. A large coefficient is, hence, a measure of consistency. When we use maximum likelihood to estimate Equation (9) we should expect that for consistent choices $\hat{\beta}_{1,ik} \to \infty$. Since numerical precision is limited we find for consistent choices in our estimation $432 \le |\hat{\beta}_{1,ik}| \le 447$ which is clearly smaller than $+\infty$, but already sufficiently large to make sure that the actual choices are made almost with certainty.⁵ Still, we should keep in mind that it is only numerical imprecision which yields finite values where we should see a $+\infty$.

Looking at Figure 2 again we see two (related) problems:

- 1. For the 18% inconsistent choices we have $\hat{\beta}_{1,ik} \leq 13$. These choices are clearly more noisy than the 82% consistent choices with $\hat{\beta}_{1,ik} \geq 432$ but it is not obvious how to exploit this difference in precision in our estimate of Equation (6).
- 2. The estimation of Equation (9) yields for two participants (13 and 42) negative values for $\hat{\beta}_1$ (-6.1 and -445). These participants choose the safer lottery more frequently when the probability of the good outcome is larger. The LOGIS model does not tell us how one should interpret the data for these cases.

We will argue below that these 18% inconsistent participants can serve two purposes. First, although their observations are noisy, dropping them would lead to a selection bias. Second,

³Note that LOGIS (the same way as the Bayesian methods) easily handles "inconsistent" participants. Figure 1 shows that we have 13 such participants in the dataset. We have no participants who, independent of \mathfrak{p} , always choose the risky lottery. These participants would correspond to $\hat{\mathfrak{p}}_{ik}^{c,L} < 0$. We have two participants who always choose the safe lottery. They correspond to $\hat{\mathfrak{p}}_{ik}^{c,L} > 1$.

⁴Since the logistic model is not fully identified it is only a convenient artefact of the numerical implementation to find a unique answer to the question for the optimal switching point. If a participant has chosen the safer lottery for all choices $p \le .6$ and the more risky lottery for all choices $p \ge .7$, the logistic model will estimate a switching point just in the middle between .6 and .7 at almost exactly .65.

⁵If a participant is just indifferent at p^c , i.e. $\beta_0 + \beta_1 p^c = 0$, then the next actual choice in the experiment is made for $p = p^c + 1/20$ and $p = p^c - 1/20$. The probability of a safe or risky choice there is, hence, $\mathcal{L}(\beta_{1,ik}/20)$ and $\mathcal{L}(-\beta_{1,ik}/20)$. For $\beta_{1,ik} = 432$ we have $\mathcal{L}(432/20) \approx 1 - 4.16 \times 10^{-10}$, $\mathcal{L}(-432/20) \approx 4.16 \times 10^{-10}$.

DROP				COUNT				LOGIS			
_	β	2.5%	97.5%	β	2.5%	97.5%		β	2.5%	97.5%	
0	-1.267	-2.776	0.171	-0.809	-2.025	0.423		-0.732	-1.962	0.496	
η	1.356	0.663	2.050	1.208	0.699	1.702		1.190	0.673	1.692	
p	1.130	-0.944	3.290	0.457	-1.322	2.190		0.339	-1.426	2.085	
$\eta \times p$	-1.172	-2.198	-0.145	-0.909	-1.632	-0.166		-0.876	-1.608	-0.126	
	σ^2	σ	$1/\sigma^2$	σ^2	σ	$1/\sigma^2$		σ^2	σ	$1/\sigma^2$	
$\overline{\nu_{ik}'}$	0.000	0.000	Inf	0.000	0.000	Inf		0.000	0.000	Inf	
ν_k	0.287	0.536	3.483	0.375	0.612	2.666		0.379	0.616	2.638	
$\epsilon_{ m ikt}$	10.381	3.222	0.096	10.296	3.209	0.097		10.301	3.210	0.097	

Table 1: ME estimate of Equations (6).

and more importantly, the noise of these observations allows us to address the errors in variables problem. If 18% of our participants clearly violate consistency we should, perhaps, not expect that we can measure the remaining 82% with infinite precision. The inconsistent 18% will allow us to better assess the precision of the remaining 82% consistent observations.

3.3.4. Estimation results for DROP, COUNT and LOGIS

Table 1 shows the estimation results for Equation (6) for different ways to deal with inconsistent observations. We see that, regardless which method we use here, the differences are not very large. We find β_{η} between 1.19 and 1.36, β_{p} is never significant and between 0.339 and 1.13, and $\hat{\beta}_{\eta \times p}$ somewhere between -1.17 and -0.876.

Irrespective of the estimation procedure, a perfectly risk loving subject ($p^c=0$) increases her contributions by more than 1 unit in response to any unit of punishment she has received in the previous period. The more the participant is risk averse, the less intense her reaction. Yet even a perfectly risk averse participant ($p^c=1$) still exhibits a small increase of contributions in reaction to punishment (0.184 $\leqslant \beta_{\eta} + \beta_{\eta \times p} \leqslant$ 0.313 depending on the model).

3.4. Correcting for errors in variables – joint estimation of (3) and (6)

The previous three approaches treat the estimation p_{ik}^c from Equation (3) and the estimation of the impact of p_{ik}^c on Δc_{ikt} from Equation (6) as two unrelated problems. Here we suggest that much can be gained if both problems are estimated together. We will use a Bayesian approach. We do not want to enter a discussion on the comparative merits of the Bayesian versus the frequentist framework (Bayarri and Berger, 2004, or Kass, 2011 may provide a starting point for a discussion). Neyman and Scott (1948) and Solari (1969) have pointed out deficiencies in the maximum likelihood approach to estimate models with errors in variables. Bayesian estimation has been shown to work well in the context of errors in variables

models for a long time and for a wide range of situations.⁶ Here we employ the Bayesian approach, in particular since it facilitates a transparent description of the two processes we want to estimate jointly. To facilitate the comparison with the frequentist framework we base our estimations on vague priors.⁷ In a first step we will demonstrate that, as long as the frequentist and the Bayesian approach estimate similar models, the results are (of course) almost indistinguishable.⁸

Likelihoods: The likelihood of the Holt and Laury task is given by Equation (3). We rewrite Equation (6) to obtain the likelihood for the public good task as follows:

$$\Delta c_{ikt} \sim \mathcal{N}(\beta_0 + \beta_\eta \eta_{ik,t-1} + \beta_p p_{ik}^c + \beta_{\eta \times p} \eta_{ik,t-1} \cdot p_{ik}^c + \nu_k + \nu_{ik}', 1/\sqrt{\tau_\varepsilon}) \tag{11} \label{eq:delta_continuous}$$

Priors: We use the following (vague) priors:

For the coefficients from Equation (11):

$$\beta_1 \sim \mathcal{N}(0, 100) \text{ with } l \in \{0, \eta, p, \eta \times p\}$$
 (12)

The group specific random effect in Equation (11):

$$v_k \sim \mathcal{N}(0, 1/\sqrt{\tau_v}); \text{ with } \tau_v \sim \Gamma(m_v^2/d_v^2, m_v/d_v^2); m_v \sim \Gamma(1, 1); d_v \sim \Gamma(1, 1)$$
 (13)

The individual specific random effect in Equation (11):

$$v'_{ik} \sim \mathcal{N}(0, 1/\sqrt{\tau_{v'}}); \text{ with } \tau_{v'} \sim \Gamma(m_{v'}^2/d_{v'}^2, m_{v'}/d_{v'}^2);$$

$$m_{v'} \sim \Gamma(1, 1); \ d_{v'} \sim \Gamma(1, 1)$$
(14)

For the switching point from the risk task, Equation (3):

$$p_{ik}^c \sim \mathcal{B}(\alpha_c, \beta_c) \text{ with } \alpha_c \sim \Gamma(2, 1/2); \beta_c \sim \Gamma(2, 1/2)$$
 (15)

For the precision of the switching point from Equation (3):

$$\tau_{ik} \sim \Gamma(m^2/d^2, m/d^2); \text{ with } m \sim \Gamma(1, 1); d \sim \Gamma(10, 0.1)$$
 (16)

The precision in Equation (11):

$$\tau_{\varepsilon} \sim \Gamma(m_{\varepsilon}^2/d_{\varepsilon}^2, m_{\varepsilon}/d_{\varepsilon}^2); \text{ with } m_{\varepsilon} \sim \Gamma(1,1); \ d_{\varepsilon} \sim \Gamma(1,1)$$
 (17)

3.4.1. Replicating LOGIS (B-LOGIS)

Before we come to the results of the joint estimation, let us use the Bayesian framework to replicate the result of the mixed effect estimation of Equation (6). As above we would treat both problems as unrelated. We would first estimate p_{ik}^c for each participant (using Equation

⁶Arminger and Muthén (1998), Dellaportas and Stephens (1995), Florens, Mouchart and Richard (1974) and Polasek and Krause (1993).

⁷For a frequentist analysis the Stata package gllamm or the R package lavaan might be useful.

⁸We use JAGS 4.0.0. to estimate Bayesian models. Estimates are based on four chains with each 1000 samples for adaptation, 4000 samples for burnin, and then, for each of the four chains, 100000 actual samples per chain. To estimate the mixed effects model we use lme4 1.1-12. Frequentist confidence intervals are based on normal bootstraps with 1000 samples.

⁹We use $\mathcal{N}(\mu, \sigma)$ for the normal distribution, $\Gamma(\alpha, \beta)$ for the Gamma distribution and $\mathcal{B}(\alpha, \beta)$ for the Beta distribution. The second argument of $\mathcal{N}(\mu, \sigma)$ is the standard deviation. $\tau = 1/\sigma^2$ is the precision. The first argument of $\Gamma(\alpha, \beta)$ is shape α, the second is rate β.

B-LOGIS									
	Mean	2.5%	97.5%	SSeff	psrf				
0	-0.758	-2.120	0.569	40000	1.0000				
η	1.213	0.664	1.728	40000	1.0000				
p	0.359	-1.499	2.218	39915	1.0000				
$\eta \times p$	-0.892	-1.643	-0.105	40000	1.0000				
$ au_{ u}$	7.793	1.383	20.341	8491	1.0001				
$ au_{ u}'$	2.260	0.350	4.713	27767	1.0000				
$ au_{arepsilon}$	0.097	0.087	0.108	40948	1.0000				

Table 2: Estimating Equations and (3) and (11) independently in the Bayesian Framework. No correction is made for errors in variables. Results are, as they should be, quite similar to the LOGIS or the COUNT model. We use 4 chains with 100000 samples each.

(3), ignoring the public good game given by (6) and (11)). We would then, as if it was an independent problem, estimate Equation (6) and (11), ignoring (3). For both steps we use priors given by (12)-(17). Since the two problems are treated as unrelated, this procedure, which we call B-LOGIS, can not take into account errors in variables from the estimation of (11) when estimating (11). Estimation results are shown in Table 2. Here the value for $\beta_{\eta \times p}$ is -0.892, i.e. similar to the corresponding estimate of the mixed effects model based on the LOGIS estimate of p_{ik}^c ($\beta_{\eta \times p} = -0.876$). Also the value for β_{η} is with 1.21 similar to the LOGIS estimate ($\beta_{\eta \times p} = 1.19$). Finally, also the value for β_p is with 0.359 similar to the LOGIS estimate ($\beta_{\eta \times p} = 0.339$). All this should be reassuring: If the Bayesian and the frequentist framework have to solve similar problems, then both get very similar results.

3.4.2. **B-JOINT**

Next we present results from joinly estimating Equations (3), (6) and (11). This approach automatically weighs the individual estimates of the risk attitude by their precision and, thus, takes into account the errors in variables problem. Priors are as given by Equations (12)-(17).

Equation (6): Estimation results (for the entire data set with 72 observations) are shown in the left part of Table 3. Figure 3 shows the highest posterior density (HPD) and confidence intervals for our estimates. The Figure illustrates the bias when not correcting for errors in the measurement of risk. The joint estimate of B-JOINT finds a substantially larger effect size for $\beta_{\eta \times p}$ (-3.63) than the estimates we got from the models where we did not control for errors in variables (between -1.17 and -0.876). In other words: Correcting for errors in variables (and thereby weighting the individual measure of risk attitude with its precision) changes the effect size by 210%.

Equation (3): Figure 2 shows the predicted switching points p_{ik}^c as a solid line. The B-JOINT estimate for p_{ik}^c follows the estimates based on COUNT or LOGIS, in particular for

B-JOINT							B-JOINT-CONSIST					
	Mean	2.5%	97.5%	SSeff	psrf			Mean	2.5%	97.5%	SSeff	psrf
0	-1.776	-2.998	-0.553	38943	1.0001	-	0	-2.501	-4.029	-1.024	38800	1.0000
η	3.240	2.181	4.346	25802	1.0000		η	4.254	3.011	5.566	31232	1.0000
р	1.763	0.178	3.411	37352	1.0001		p	2.811	0.763	4.930	38514	1.0000
$\eta imes p$	-3.632	-5.206	-2.137	23961	1.0000		$\eta \times p$	-5.168	-7.040	-3.358	28148	1.0000
$ au_{ u}$	6.904	1.215	16.860	9374	1.0005		$ au_{ u}$	5.431	1.074	12.840	10549	1.0005
$ au_{ u}'$	2.321	0.422	4.930	27638	1.0002		$ au_{ u}'$	2.538	0.377	5.464	27565	1.0000
$ au_{arepsilon}$	0.109	0.097	0.122	37981	1.0000		$ au_{arepsilon}$	0.114	0.100	0.128	36550	1.0000

Table 3: Joint estimation of Equations (3) and (11).

The joint estimation corrects for errors in variables. The B-JOINT model uses all data (left table). We sample from 4 chains with 100000 samples each.. B-JOINT-CONSIST uses only consistent participants (right table). We sample from 4 chains with 100000 samples each.

the central values of p^c . For participants where LOGIS and COUNT estimate more extreme values of p^c , B-JOINT takes a more conservative approach. E.g. the extreme risk aversion of the rightmost participants in Figure 2 is not really in line with the distribution of the remaining values of p^c_{ik} . B-JOINT estimates, hence, a smaller precision τ_{ik} , and, accordingly, adjusts the value of p^c_{ik} more towards the centre of the distribution.

For individuals 13 and 42 (those, who choose the safer lottery more frequently when the probability of the good outcome was larger) LOGIS estimates with Equation (9) a negative slope β_1 and, hence, a meaningless switching point. For these two individuals the Bayesian model estimates a precision τ_{ik} very close to zero.

The top panel in Figure 2 shows the value of β_1 from Equation (9). The panel in the middle shows the estimated precision τ_{ik} from Equation (3). Comparing both panels, one sees that the B-JOINT estimates are more differentiated. The LOGIS estimates for β_1 are either close to positive or negative infinity, or close to zero. By contrast the B-JOINT estimates for precision τ_{ik} show a more detailed picture of deviation from utility maximising behaviour. For the consistent choices the estimated parameter for τ is rather large with a median value of 57.4. For the inconsistent choices τ covers a range from 1.68 to 47.6.

Selection bias versus errors in variables: While the results of B-JOINT are based on the entire dataset, including the inconsistent decision makers, we also estimate B-JOINT-CONSIST, based on the same model but using only data from consistent decision makers. The right part of Table 3 shows results only for the 59 consistent observations. The comparison of the two models, B-JOINT and B-JOINT-CONSIST, allows us to decide whether our results are mainly driven by the correction for errors in variables or by avoiding selection bias. Both models take into account errors in variables. Both models come to substantial effect sizes for $\eta \times p$: -5.17 for B-JOINT-CONSIST, and -3.63 for B-JOINT. We see that including or discarding inconsistent observations does have an effect, however the effect is much smaller than the error in variables problem. Above we have seen that errors in variables change the coefficent $\beta_{\eta \times p}$ by 210%. Once errors in variables are taken into account, including

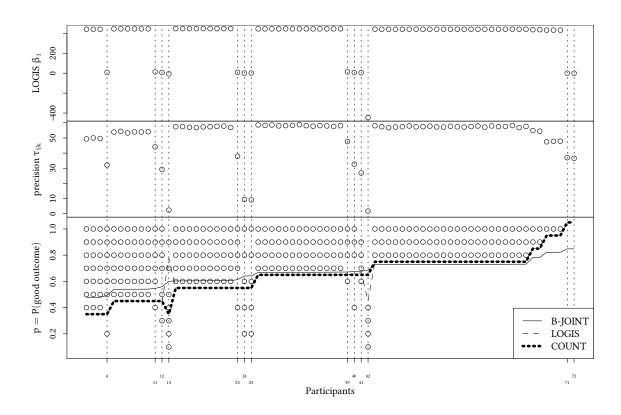


Figure 2: Choices, switching points p_{ik}^c and precision of choice τ_{ik}

The bottom panel shows for each participant the actual choices: \circ if the participant chose the more risky lottery. Participants are ordered by their median switching points p_{ik}^c as estimated from the B-JOINT model. The solid line denotes the median estimated switching points p_{ik}^c from B-JOINT. The dashed line shows the estimated switching points from LOGIS. Vertical reference lines denote participants with inconsistent choices, i.e. with more than one switching point. The panel in the middle shows the estimated values of the participant's precision, τ , from B-JOINT. The top panel shows the estimated value of β_1 from LOGIS.

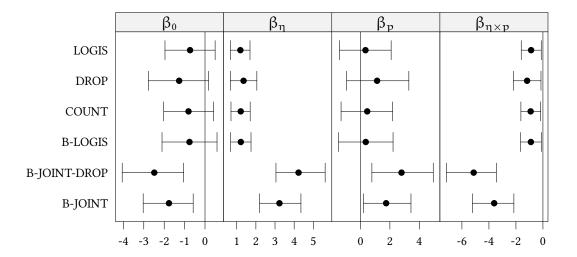


Figure 3: Highest posterior density and confidence invervals for Equation (6). The figure shows 95% confidence intervals for the mixed effects model based on LOGIS, DROP and COUNT estimates for p_{ik}^c . The figure also shows 95% HPD intervals for three specifications of the Bayesian model: B-LOGIS, which is a replication of the B-LOGIS model in the Bayesian framework based on consistent choices only, B-JOINT-DROP, the joint model based on only consistent choices, and B-JOINT, the joint model for all choices.

inconsistent observations affects the effect size by only 30%.

4. Simulation

Should one correct for errors in variables? The above result seems to suggest that such a correction is desirable, but how general is this finding? Here we simulate 100 times a sample that is similar to the one we studied above. Each sample has a size of 100 participants which come in 25 groups.

Behaviour in the risk task and in the public good game follows Equations (3) and (11). The parameters of the regression are random and in the same order of magnitude as in our experiment: $\beta_1 \sim \mathcal{N}(0,2)$ for $l \in \{0,\eta,p,\eta \times p\}$. The random effects have a similar variance: $\nu_k \sim \mathcal{N}(0,\sqrt{1/5}), \, \nu'_{ik} \sim \mathcal{N}(0,\sqrt{2/7}), \, \varepsilon_{ikt} \sim \mathcal{N}(0,\sqrt{10}).$ The risk aversion also follows a distribution similar to the one in our experiment: $p^c_{ik} \sim \mathcal{B}(6.98,3.63), \, \tau_{ik} \sim \Gamma(0.847,0.2).$

For each of the 100 simulations we obtain an estimate for the coefficients of Equation (6). Here we are specifically interested in $\beta_{\eta\times p}$. Figure 4 shows for both methods COUNT and B-JOINT quartiles of the difference between the estimates and the true values, $\hat{\beta}_{\eta\times p}-\beta_{\eta\times p}$. We see that B-JOINT performs fairly well. The difference $\hat{\beta}_{\eta\times p}-\beta_{\eta\times p}$ is close to zero. The estimates of COUNT are clearly biased. They are too large in the negative and too small in the positive domain. This bias is what we should expect if errors in variables are neglected.

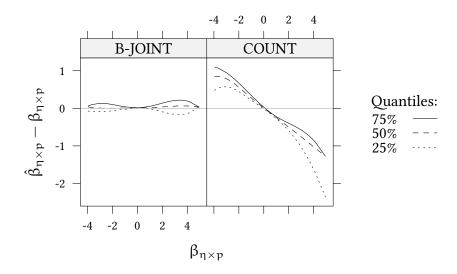


Figure 4: Simulation results

The figure shows 25%, 50%, and 75% quantiles of a B-spline (df=5) for different values of $\beta_{\eta \times p}$ and for the different models.

5. Conclusion

We have the impression that a lot can and should be learned from behaviour which looks inconsistent, i.e. which does not fit the model the experimenter has in mind. We have tried to make use of seemingly inconsistent data in two ways: directly, by not dropping these observations, thereby avoiding selection bias, and indirectly by taking more seriously the lack of precision of all, thereby addressing the errors in variables problem.

We have seen that, at least for our problem, the impact of the selection bias is relatively small. Instead, we have found the impact of the errors in variables problem substantial. The aim of this paper is to convince the experimental community that it makes sense to take errors in variables seriously, and that these errors can be handled in a meaningful, and in a feasible way. The fact that the Holt and Laury task asks each participant to take multiple risky choices is not a nuisance. It enables the researcher to assess the precision of his or her instrument.

But the reanalysis of the example data set also yields a message that is relevant for criminal policy: the experience of punishment has the most profound effect on individuals who are risk seeking. Regardless whether we neglect or take into account errors in variables we always find evidence against hypothesis 1. The size of the effect depends, however, crucially on whether errors are taken into account. For criminal policy, the result is welcome news. It has been claimed theoretically that criminals must in equilibrium be risk-seeking (Becker, 1968). Empirical evidence is only correlational, but supports the point (Cochran, Wood and Arneklev, 1994; De Li, 2004; LaGrange and Silverman, 1999). Hence those individuals whose behavior society is most interested to change by the experience of punishment are actually most sensitive to this experience.

References

- Adcock, R. J. (1877). "Note on the Method of Least Squares". In: *The Analyst* 4.6, pp. 183–184. Arminger, Gerhard and Bengt O. Muthén (1998). "A Bayesian Approach to Nonlinear Latent Variable Models Using the Gibbs Sampler and the Metropolis-Hastings Algorithm". In: *Psychometrica* 63.3, pp. 271–300.
- Bayarri, M. J. and J. O. Berger (2004). "The interplay of Bayesian and frequentist analysis". In: *Statistical Science* 19.1, pp. 58–80. DOI: 10.1214/088342304000000116.
- Becker, Gary (1968). "Crime and Punishment: An Economic Approach". In: *Journal of Political Economy* 76.
- Cochran, John K., Peter B. Wood and Bruce J Arneklev (1994). "Is the religiosity-delinquency relationship spurious? A test of arousal and social control theories". In: *Journal of Research in Crime and Delinquency* 31.1, pp. 92–123.
- De Li, Spencer (2004). "The impacts of self-control and social bonds on juvenile delinquency in a national sample of midadolescents". In: *Deviant Behavior* 25.4, pp. 351–373. DOI: 10. 1080/01639620490441236.
- Dellaportas, Petros and David A. Stephens (1995). "Bayesian Analysis of Errors-in-Variables Regression Models". In: *Biometrics* 51.3, pp. 1085–1095.
- Eckel, Catherine C. and Philip J. Grossman (2008). "Forecasting risk attitudes: An experimental study using actual and forecast gamble choices". In: *Journal of Economic Behavior & Organization* 68.1, pp. 1 –17.
- Engel, Christoph (2014). "Social preferences can make imperfect sanctions work: Evidence from a public good experiment". In: *Journal of Economic Behavior & Organization* 108.C, pp. 343–353.
- Fehr, Ernst and Simon Gächter (2000). "Cooperation and Punishment in Public Goods Experiments". In: *American Economic Review, American Economic Association* 90.4, pp. 980–994.
- Fischbacher, Urs (2007). "z-Tree: Zurich Toolbox for Ready-made Economic Experiments". In: *Experimental Economics* 10.2, pp. 171–178.
- Florens, J. P., M. Mouchart and J. F. Richard (1974). "Bayesian inference in Error-in-Variables Models". In: *Journal of Multivariate Analysis* 4, pp. 419–452.
- Gelman, Andrew and Donald B. Rubin (1992). "Inference from Iterative Simulation Using Multiple Sequences". In: *Statistical Science* 7.4, pp. 457–472. DOI: 10.1214/ss/1177011136.
- Gillard, Jonathan (2010). "An overview of linear structural models in errors in variables regression". In: *REVSTAT–Statistical Journal* 8.1, pp. 57–80.
- Greiner, Ben (2004). "An Online Recruitment System for Economic Experiments". In: *Forschung und wissenschaftliches Rechnen*. Ed. by Kurt Kremer and Volker Macho. Vol. 63. GWDG Bericht. Ges. für Wiss. Datenverarbeitung. Göttingen, pp. 79–93.
- Holt, Charles A. and Susan K. Laury (2002). "Risk Aversion and Incentive Effects". In: *The American Economic Review* 92.5, pp. 1644–1655.
- Kass, Robert E (2011). "Statistical inference: The big picture". In: *Statistical science: a review journal of the Institute of Mathematical Statistics* 26.1, p. 1.

- Kimball, Miles S, Claudia R Sahm and Matthew D Shapiro (2008). "Imputing Risk Tolerance From Survey Responses". In: *Journal of the American Statistical Association* 103.483, pp. 1028–1038. DOI: 10.1198/016214508000000139.
- LaGrange, Teresa C. and Robert A. Silverman (1999). "Low Self-Control and Opportunity: Testing the General Theory of Crime as an Explanation for Gender Differences in Delinquency". In: *Criminology* 37.1, pp. 41–72. DOI: 10.1111/j.1745-9125.1999.tb00479.x.
- Lindley, Dennis Victor and G. M. El-Sayyad (1968). "The Bayesian Estimation of a Linear Functional Relationships". In: *Journal of the Royal Statistical Society. Series B (Methodological)* 30.1, pp. 190–202.
- Neyman, Jerzy and Elizabeth L. Scott (1948). "Consistent Estimates Based on Partially Consistent Observations". In: *Econometrica* 16.1, pp. 1–32.
- Polasek, Wolfgang and Andreas Krause (1993). "Bayesian regression model with simple errors in variables structure". In: *The Statistician* 42, pp. 571–580.
- R Development Core Team (2015). *R: A Language and Environment for Statistical Computing*. ISBN 3-900051-07-0. R Foundation for Statistical Computing. Vienna, Austria.
- Rabe-Hesketh, Sophia, Anders Skrondal and Andrew Pickles (2004). "Generalized multilevel structural equation modeling". In: *Psychometrika* 69.2, pp. 167–190. DOI: 10.1007/BF02295939.
- Ross, L., R.E. Nisbett and M. Gladwell (2011). *The Person and the Situation: Perspectives of Social Psychology*. Pinter & Martin Limited.
- Solari, Mary E. (1969). "The "Maximum Likelihood Solution" of the Problem of Estimating a Linear Functional Relationship". In: *Journal of the Royal Statistical Society. Series B (Methodological)* 31.2, pp. 372–375.

A. Posteriors for α_{τ} , β_{τ} and p_{ik}^{c}

Figure 5 shows the prior and posterior distribution for p^c and for the parameters $\alpha_\tau = m^2/d^2$, $\beta_\tau = m/d^2$ which determine the distribution of τ_{ik} . In Equation (15) we assume p^c_{ik} follows a Beta distribution with parameters α_c and β_c following a Gamma distribution (so that a priori p^c_{ik} follows an almost uniform distribution). The median of the posterior parameters are $\alpha = 7.89$ and $\beta = 3.95$, i.e., as we also see in the Figure, participants do avoid the extreme values of p^c and, not surprisingly, are more risk averse than risk loving.

In Equation (16) we assume that the precision τ_{ik} is drawn from a Gamma distribution. The median of the posterior shape parameter of this distribution is $\alpha=1.16$ and the median of the posterior rate parameter is $\beta=0.027$. Figure 6 shows the posterior distribution of τ_{ik} as well as the median values of τ_{ik} for the individual participants. Conceptually, this is not entirely trivial. Often we assume that "consistent" choices are infinitely precise, i.e. $\tau=\infty$. However, if some choices, here 18% of all participants, are inconsistent, i.e. contain a substantial lack of precision (1.68 $\leq \tau \leq 47.6$), it would be foolish to assume that the remaining 82% choices are infinitely precise.

How can we assess the precision of choices? In Figure 6 we see how the estimator uses the 18% inconsistent observations as a handle to estimate the left part of the distribution of τ . On the right side of the distribution the value of 57.4 for the median consistent decision maker results from the discrete steps in the Holt and Laury (2002) task which implies a finite

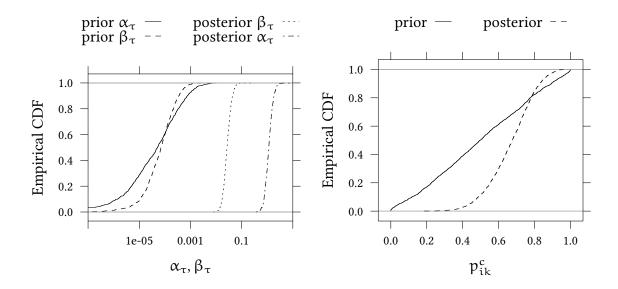


Figure 5: Posteriors for $\alpha_{\tau},\,\beta_{\tau}$ and $p^{c}_{\mathfrak{i}\mathtt{k}}$

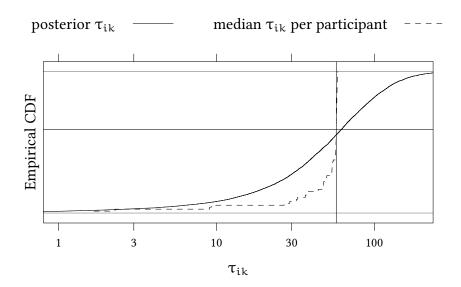


Figure 6: Precision of choices for τ_{ik}

The solid line show the posterior distribution of τ_{ik} as in Equation (16). The dotted line shows the distribution of the median of τ_{ik} taken for each participant.

precision for the consistent choices.

B. Instructions

General Instructions In the following experiment, you can earn a substantial amount of money, depending on your decisions. It is therefore very important that you read these instructions carefully.

During the experiment, any communication whatsoever is forbidden. If you have any questions, please ask us. Disobeying this rule will lead to exclusion from the experiment and from all payments.

You will in any case receive $4 \in$ for taking part in this experiment. In the first two parts of the experiment, we do not speak not of \in , but instead of Taler. Your entire income from these two parts of the experiment is hence initially calculated in Taler. The total number of Taler you earn during the experiment is converted into \in at the end and paid to you in cash, at the rate of

1 Taler = 4 Eurocent.

The experiment consists of four parts. We will start by explaining the first part. You will receive separate instructions for the other parts.

Part One of the Experiment In the first part of the experiment, there are two roles: A and B. Four participants who have the role A form a group. One participant who has the role B is allocated to each group. The computer will randomly assign your role to you at the beginning of the experiment.

On the following pages, we will describe to you the exact procedure of this part of the experiment.

Information on the Exact Procedure of the Experiment This part of the experiment has two steps. In the first step, role A participants make a decision on contributions to a project. In the second step, the role B participant can reduce the role A participants' income. At the start, each role A participant receives 20 Taler, which we refer to in the following as the endowment. Role B participants receive 20 points at the start of step 2. We explain below how role B participants may use these points.

Step 1: In Step 1, only the four role A participants in a group make a decision. Each role A member's decision influences the income of all other role A players in the group. The income of player B is not affected by this decision. As a role A participant, you have to decide how many of the 20 Taler you wish to invest in a project and how many you wish to keep for yourself.

If you are a role A player, your income consists of two parts:

- 1. the Taler you have kept for yourself ("income retained from endowment")
- 2. the "income from the project". The income from the project is calculated as follows: Your income from the project = 0.4 times the total sum of contributions to the project

Your income is therefore calculated as follows:

(20 Taler – your contribution to the project) + 0.4* (total sum of contributions to the project).

The income from the project of all role A group members is calculated according to the same formula, i.e., each role A group member receives the same income from the project. If, for example, the sum of the contributions from all role A group members is 60 Taler, then you and all other role A group members receive an income from the project of 0.4*60 = 24 Taler. If the role A group members have contributed a total of 9 Taler to the project, then you and all other role A group members receive an income from the project of 0.4*9 = 3.6 Taler.

For every Taler that you keep for yourself, you earn an income of 1 Taler. If instead you contribute a Taler from your endowment to your group's project, the sum of the contributions to the project increases by 1 Taler and your income from the project increases by 0.4*1 = 0.4 Taler. However, this also means that the income of all other role A group members increases by 0.4*1 = 0.4 Taler, so that the total group income increases by 0.4*4 = 1.6 Taler.

In other words, the other role A group members also profit from your own contributions to the project. In turn, you also benefit from the other group members' contributions to the project. For every Taler that another group member contributes to the project, you earn 0.4*1 = 0.4 Taler.

Please note that the role B participant cannot contribute to the project and does not earn any income from the project.

Step 2: In Step 2, only the role B participant makes decisions. As role B participant, you may reduce or maintain the income of every participant in Step 2 by distributing points.

At the beginning of Step 2, the four role A participants and the role B participant are told how much each of the role A participants has contributed to the project.

As a role B player, you now have to decide, for each of the four role A participants, whether you wish to distribute points to them and, if so, how many points you wish to distribute to them. You are obliged to enter a figure. If you do not wish to change the income of a particular role A participant, please enter 0. Should you choose a number greater than zero, you reduce the income of that particular participant. For each point that you allocate to a participant, the income of this participant is reduced by 3 Taler.

The total Taler income of a role A participant from both steps is hence calculated using the following formula:

Income from Step 1 – 3 * (sum of points received)

Please note that Taler income at the end of Step 2 can also be negative for role A participants. This can be the case if the income-subtraction from points received is larger than the income from Step 1. However, the role B participant can distribute a maximum of 20 points to all four role A members of the group. 20 points are the maximum limit. As a role B participant, you can also distribute fewer points. It is also possible not to distribute any points at all.

If you have role B, please state your reasons for your decision to distribute (or not to distribute) points, and why you distributed a particular number of points, if applicable. In doing this, please try to be factual. Please enter your statement in the corresponding space on your screen. You have 500 characters max. to do this. Please note that, in order to send your statement, you will have to press "Enter" once each time. As soon as you have done this, you will no longer be able to change what you have written.

The income of the role B participant does not depend on the income of the other role A participants, nor on the income from the project. For taking part in the first part of the experiment, he or she receives a fixed payment of

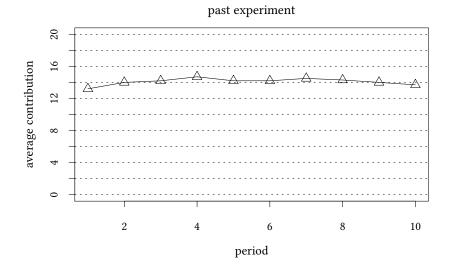
1 €.

In addition, the role B participant receives the sum of $0.01 \in$ for each point that he or she did not distribute. Once all participants have made their decisions, your screen will show your income for the period and your total income so far.

After this, the first part of the experiment ends. You will then be told what your payment is for this part of the experiment. Hence, you will also know how many points you and all other participants have been given by player B.

Experiences from an Earlier Experiment For your information, we give you the following graph, which tells you the average contributions made in a very similar experiment that was conducted in this laboratory.

In this experiment, too, there were groups of 4 role A participants and one role B participant each. The role A participants' income was calculated in exactly the same way. The experiment had 10 equal periods. The role B participant also had 20 points at his disposal in each period. At the end of each period, the role A participants were told how much each of the other participants had contributed and how the role B participant had reacted to this.



Part Two of the Experiment The second part of the experiment consists of 10 repetitions of the first part. Throughout the entire second part, all participants keep the role they had in the first part of the experiment. The computer randomly rematches the groups of four in every period. In each period, the computer randomly assigns a role B participant to each group.

As a reminder: In each period, each role A participant receives 20 Taler, which may be contributed to the project entirely, in part, or not at all. For each period, calculating the income from the project for the role A participants in a group happens in exactly the same way as it did in the first part of the experiment. In each period, each role B participant receives 20 points, which may be used to reduce the income of the players A in the group. For each point that a role A participant receives in a period, 3 Taler are subtracted. For each point that a role B participant does not use, he or she is given the sum of $0.01 \in$. In addition to the income from the points retained, each role B participant receives a flat fee of $10 \in$ for participating in this second part of the experiment.

At the beginning of Step 2 of each period, the four role A participants and the role B participant are told how much each of the role A participants contributed to the project.

Please note that the groups are rematched anew in each period.

After each period, you are told about your individual payoff. You are therefore also informed how many points you and the other participants have been assigned by the role B participant.

Part Three of the Experiment We will now ask you to make some decisions. In order to do this, you will be randomly paired with another participant. In several distribution decisions, you will be able to allocate points to this other participant and to yourself by repeatedly choosing between two distributions, 'A' and 'B'. The points you allocate to yourself will be paid out to you at the end of the experiment at a rate of 500 points = $1 \in$. At the same time, you are also randomly assigned to another participant in the experiment, who is, in turn, also able to allocate points to you by choosing between distributions. This participant is not the same participant as the one to whom you have been allocating points. The points allocated to you are also credited to your account. The sum of all points you have allocated to yourself and those allocated to you by the other participant are paid out to you at the end of the experiment at a rate of 500 points = $1 \in$. Please note that the participants assigned to you in this part of the experiment are not the members of your group from the preceding part of the experiment. You will therefore be dealing with other participants.

The individual decision tasks will look like this:

Possib	ility A	Possibility B			
Your points:	The points of the participant of the experiment allocated to you:	Your points:	The points of the participant of the experiment allocated to you:		
0	500	304	397		

A B In this example: If you click 'A', you give yourself 0 points and 500 points to the participant allocated to you. If you click 'B', you give yourself 304 points and 397 points to the participant allocated to you.