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We provide an example for an errors in variables problem which is quite com-
mon in lab experimental practice but which might often be neglected: In one task
participants’ attitudes are measured, in another task participants’ behaviour is
related to this measurement. How should we deal with imperfect measurements
of these attitudes?

To illustrate the problem we consider the relation between risk aversion and
punishment behaviour. We know that measurements of the attitude towards risk
in the lab are often noisy or inconsistent. We show that ignoring this noise or
discarding inconsistent observations yields to a quite different estimate of the
relation between attitude and behaviour.
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1. Introduction

When we run laboratory experiments and when we try to structure the results of these ex-
periments, we sometimes combine two parts of an experiment. In one part of the experiment
we measure individual attitudes. These measurements are used to explain behaviour in an-
other part of the experiment. Clearly, one can not assume that these measurements are free
of any errors. This presupposes that the measured attitude will play itself out the same way
whenever it is elicited and in whichever context it happens to matter. Differential psychology
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has long cast doubt on this assumption. Traits and attitudes are unlikely to be stable across
situations (Ross, Nisbett and Gladwell, 2011). This suggests that attitudes will often only be
imperfectly observed in post-experimental tests.

For the econometrician the problem of an explanatory variable that is only imperfectly ob-
served is well known as one of “errors in variables”. More technically, if we want to estimate
Y = B¢ + B:X + u, but we can observe X only with an error, e.g. we observe & ~ N(X, 0¢),
then estimating Y = (3o + :& + u with standard OLS provides a biased estimator for {3;.
Already Adcock (1877) mentions the problem of errors in variables. Since then many authors
have discussed this problem (see Gillard, |2010, for an overview). Errors in variables are, in-
deed, acknowledged in surveys in the field (see, e.g., Kimball, Sahm and Shapiro, 2008, who
use survey data on risk tolerance). Deficiencies in the maximum likelihood approach to es-
timate models with errors in variables were pointed out e.g. by Neyman and Scott (1948) and
Solari (1969). Lindley and El-Sayyad (1968) and Florens, Mouchart and Richard (1974) have
proposed Bayesian inference to overcome these problems. During the last decades Markov
chain Monte Carlo methods have become a powerful and accessible tool for Bayesian in-
ference. Thus, the Bayesian approach lends itself particularly well to estimate models with
errors in variables. In the frequentist world the problem that we outline below could be de-
scribed as a generalised multilevel structural equation (Rabe-Hesketh, Skrondal and Pickles,
2004). In this paper we use the Bayesian approach since we think that it makes the problem
and its solution particularly transparent.

This brings us to laboratory experiments in economics: Should we worry about errors in
variables in the lab? After all, when o in the above problem is small, the bias will be small,
too. Perhaps the situations we are studying as experimental economists are of the latter kind
and the problem is more of academic than of practical interest?

To demonstrate that errors in variables do matter for lab data we consider the following
example: In one part of the experiment we measure participants’ attitudes towards risk with
the help of a Holt and Laury (2002) task[]] In another part of the experiment we use these
attitudes to explain reactions to punishment in a public good game. In the Holt and Laury
task, 18% of all participants behave “inconsistently”, in that they switch more than once
between the lottery with the smaller and the lottery with the larger spread. One of the options
mentioned by Holt and Laury (2002) and used by many experimentalists, is to simply drop
the data from such participants. We show why this solution can be problematic. We discuss
a series of alternatives, and show how a joint estimation of both decision processes offers an
easy and effective solution. A joint estimation has two advantages: First, one uses the data
from all participants, thus avoiding a selection bias| Second, we can estimate, separately for
each participant, the precision of the measure for her risk attitude. This allows us to address
the errors in variables problem. As our sample demonstrates, results change substantially if
one treats the results from the Holt and Laury task as an explanatory variable measured with
error.

The remainder of the paper is organized as follows: Section |2| introduces the design of

! As is standard, participants were not admonished to switch at most once.

2Otherwise one does not estimate the effect of risk aversion on punishing behavior in the population, but the
effect of risk aversion on the punishing behavior of only those individuals whose reactions to risky choices
are highly consistent.



the example experiment from which the data are taken and that we use to illustrate our
methodological point. Section|[3|discusses alternative methods for dealing with inconsistency
in the measurement of risk attitudes. Section[4 uses simulations to assess the size of the bias
due to errors in variables in a more general context. Section [5| concludes.

2. Design of the Example Experiment

In our example we study a four-person repeated public good game with punishment. The
experiment was conducted in the Cologne Laboratory for Economic Research in 2012. The
experiment was implemented in zTree (Fischbacher, [2007). Participants were invited using
the software ORSEE (Greiner, [2004). Of 90 participants 80 were students of various majors
with a mean age 25.4. 44% were female. Participants on average earned 15.11€ (19.82$ on the
days of the experiment), 14.80€ for active players, and 16.38€ for authorities. The experiment
had 3 sessions of 30 participants (6 groups of 4 active participants; 6 passive authorities).

The aim of the experiment is to study the relation between attitudes to risk and the reaction
to punishment in a public good game. Fehr and Gachter (2000) show that if participants in
a public good game have the possibility to punish each other, contributions in the public
good game stabilize at a high level. Engel (2014) shows that social preferences may make
punishment effective even if its expected value is so low that a perfectly selfish individual
would not be deterred.

In our example we reanalyze data generated for testing the interplay between social pref-
erences and punishment. The data is taken from Engel (2014). In this experiment four (active)
participants i € {1,...,4} in group k contribute c;y in round t to linear public good. A fifth
participant a (an authority) has the power to impose a punishment 1n;y on each active par-
ticipant. Profits 7ti¢ of the active participants and 714yt of the authority are given by (1) and

(2):

Profit of active participant i: 7ty = 20 — Cixt + 4 Z Cikt — 3Mikt (1)

1

Profit of authority a: 7qt = 25+ 20— Z Nikt (2)
i

The fifth participant gains a fixed period income of 25 tokens. She can use an additional
endowment of 20 tokens to punish any of the active group members. Any token not used
for punishment she keeps for herself. After the end of the first round, there is a surprise
restart with another 10 rounds of the same game. Participants are rematched every period
to matching groups of size 10.

In the experiment, punishment authority is vested in a participant. Active participants
are matched to one such authority in each period. Active participants are uncertain which
punishment policy the authority will be adopting. The only information they have is the
experience of having been punished in previous periods. Punishment in the last period is the
most vivid experience. It should have the highest salience, and therefore the strongest effect.
The more they are averse to risk, the stronger this signal should guide their choices in the
subsequent period: risk averse participants loose more utility when punished again.
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Figure 1: Choices in the risk task
The panel shows choices for each participant: o if the participant chose the lottery with the larger spread and
nothing if the participant chose the smaller spread. Vertical reference lines denote participants with inconsistent
choices (see [5). Participants are ordered by their risk attitudes, with the more risk seeking participants at the
left.

Hypothesis 1 The more a participant is risk averse, the more she increases her contributions
to a linear public good after having been punished in the previous period.

After the main experiment, a battery of post-experimental tests is administered. For the
purposes of this paper, only the test for risk aversion is of interest. The experiment uses the
test introduced by Holt and Laury (2002). Holt and Laury design a task where participants
choose between a (safe) lottery with a small spread, p - 2$+ (1 —7p) - 1.6$, and a (risky) lottery
with a large spread, p - 3.85$ 4+ (1 — p) - .1$, where the probability of the good outcome is
pe{1,.2.3,...,1}

3. How to Deal with an Inconsistent Measure for Risk
Attitudes?

In the previous section we have outlined an experiment where for each participant i in group
k we (imperfectly) measure risk aversion. We expect punishment in a previous round 1nix ¢
to stimulate contribution c;y: in the current round. Furthermore we expect that this effect is
stronger for more risk averse participants and weaker for more risk loving participants.

3.1. Measuring risk aversion

To test Hypothesis [1, we need for each active participant a measure of her risk aversion.
Choices in the risk task for the 72 participants holding the active role are shown in Figure
Choices where a participant chose the lottery with the larger spread are denoted with a o,
choices where the participant chose the lottery with the smaller spread are left blank.

If we assume that preferences for money follow e.g. CRRA, i.e. u(z) = z'"", then the
critical value of p¢ where participants are indifferent between the more safe and the more
risky choice is a monotonic function of their relative risk aversion r. We can then either



describe participants by 1 or by their critical value of p€. In the following we will use p$, to
describe preferences of individual 1 in group k.

One way to formalise choices in the Holt and Laury task is the logistic model. The prob-
ability of a risky choice of individual ik in lottery p could be written as follows:

Plrisky . [p) = £ ((p — PS) - vEr) withp € {1,.2,..., 1} 3)

Here £ is the logistic function, p describes the probability of the good outcome in the Holt
and Laury task, p{, is be the critical value where participant ik is just indifferent between
the two choices, and T;y is the precision of the observation. For a perfect measurement of a
perfectly consistent decision maker T;, would be infinitely large. A T, = 0 would denote
a decision maker who choses the more risky alternative always with the same probability,
regardless of the value of p. The smaller T}, the more likely it is to observe inconsistent
choices.

In Figure |1} we have ordered participants from the most risk loving on the left to the most
risk averse on the right. Ideally, we should expect that each participant i in group k can be
characterized by a single switching point p{, such that the following holds:

risky ifp > p§i
choiceji (p) = < either safe or risky  if p = p§,. (4)
safe ifp < pfi

We call a participant i in group k consistent iff
max{p|choice; (p) = safe} < min{p|choice;y(p) = risky)}. (5)

For a consistent participant a p§, can be found such that all choices can be rationalised with
Equation (4). Indeed, 82% of the participants in this sample are consistent according to (5). We
call a participant inconsistent if (5) does not hold, i.e. not all their choices can be rationalised
with Equation (4). In Figure [1] vertical reference lines denote participants with inconsistent
choices. The choices of 18% of the participants are inconsistent.

A certain amount of inconsistent choices is typical for this test. Some researchers react
by using an alternative test that forces consistency. Eckel and Grossman (2008) directly ask
participants for the switching point. Depending on the research question, this may be sat-
isfactory. However, by enforcing consistent choices for p{, we lose information about the
precision ;i of that choice. Below we will argue that information about this precision may
be useful.

Before we do this, let us come to the contributions in the public good game.

3.2. Contributions to the public good

To test Hypothesis[1|we have to explain changes in the contribution to the public good Aciy
as a function of previous punishment 1 and risk version p$,. We eventually want to estimate
the following model:

Acixe = Bo + BrNikt—1 + BpPSk + Brxp Nikt—1 - Pk + Vi + Vi + €ike (6)



Aciyt is the change of contribution to the public good of individual i from matching group k
at time t. nix ¢ is the punishment received by individual 1 from group k at time t—1, i.e. the
punishment received in the previous period. p{, is a measure for risk aversion of individual
i from group k. vy is a random effect for group k. v/, is a random effect for individual 1
from group k. €iy¢ is the residual. In line with Hypothesis 1] we expect the interaction term
By xp to be positive.

In the example study, the aim is to explain reactions to punishment as a function of the
attitude towards risk. The latter is described as a switching point p{, in the Holt and Laury
task. In Section [3.3] we comparatively assess four alternative approaches for dealing with
inconsistent choices. All four approaches can be used to estimate Equation (6)), but all assume
that p§, could be measured with infinite precision. As a result none of these four approaches
addresses the errors in variables problem. In Section [3.4.2] we estimate the decision process
determining p§, jointly with Equation (6)). These approach offer a solution for the errors in
variables problem.

3.3. No correction for errors in variables
3.3.1. Drop inconsistent observations (DROP)

This procedure removes from our sample the 18% of the participants which are inconsistent
according to (5). In Figure [2| these are the participants which are crossed out by a vertical
dashed line. For the remaining 82% of our participants we define the switching point as
follows:

]5°’D _ max{p|choice;y (p) = safe} + min{p|choice;y (p) = risky)} )

Figure 2| suggests that inconsistent behaviour could be more likely with risk seeking par-
ticipants. The DROP procedure might, hence, selectively remove risk seeking participants
from the sample. It also does not tell us anything about the precision of p§,, i.e. it does not
help us to address the errors in variables problem.

3.3.2. Counting the number of safe choices (COUNT)

Holt and Laury (2002) propose to replace the switching point for inconsistent participants
by simply counting the number of safer choices. To ease the comparison with the other
measures we use the following linear transformation:

1 1
~c,C .
Pit 20 + m [choice;y (p) = safe] (8)
P
Figure 2| shows the resulting estimates of risk preferences as a thick dotted line. This proced-
ure addresses the selection bias but not the errors in variables problem.



3.3.3. Alogistic regression to estimate switching points (LOGIS)

In Equation [3| we have used the logistic model to describe choices in the risk task. We can
rephrase this model as follows:

P(riSkYith) =L (BO,ik + Bl,ikp) where P € {1: 2,0 1} (9)

The value of p where the P(risky,, [p) = 1/2, i.e. where individual i in group k chooses the
more risky and the safer lottery with equal probabilities, is our estimated switching point
P, Tt is given by

TA%C]LL = —Boik/Prik - (10)
The dashed line in the bottom part Figure [2[ shows for each individual the critical value 5"
obtained with this methodﬂ As Figure |2/ demonstrates, the results obtained with LOGIS are
similar to COUNT, except for participants 13 and 42 The top part of the same figure shows
for each individual the coefficient f3;ix. When this coefficient is large then P(risky; . [p) is
either close to 1 or close to 0 for most values of p. A large coeflicient is, hence, a measure of
consistency. When we use maximum likelihood to estimate Equation (9) we should expect
that for consistent choices Bl,ik — 00. Since numerical precision is limited we find for
consistent choices in our estimation 432 < I[ASMk! < 447 which is clearly smaller than +oo,
but already sufficiently large to make sure that the actual choices are made almost with
certainty[| Still, we should keep in mind that it is only numerical imprecision which yields
finite values where we should see a +o0.

Looking at Figure |2|again we see two (related) problems:

1. For the 18% inconsistent choices we have (gmk < 13. These choices are clearly more
noisy than the 82% consistent choices with 3;;x > 432 but it is not obvious how to
exploit this difference in precision in our estimate of Equation (6).

2. The estimation of Equation (9) yields for two participants (13 and 42) negative values
for B, (—6.1 and —445). These participants choose the safer lottery more frequently
when the probability of the good outcome is larger. The LOGIS model does not tell us
how one should interpret the data for these cases.

We will argue below that these 18% inconsistent participants can serve two purposes. First,
although their observations are noisy, dropping them would lead to a selection bias. Second,

*Note that LOGIS (the same way as the Bayesian methods) easily handles “inconsistent” participants. Figure
shows that we have 13 such participants in the dataset. We have no participants who, independent of p,
always choose the risky lottery. These participants would correspond to ﬁiCkL < 0. We have two participants
who always choose the safe lottery. They correspond to f)iC{(L > 1.

“Since the logistic model is not fully identified it is only a convenient artefact of the numerical implementation
to find a unique answer to the question for the optimal switching point. If a participant has chosen the safer
lottery for all choices p < .6 and the more risky lottery for all choices p > .7, the logistic model will estimate
a switching point just in the middle between .6 and .7 at almost exactly .65.

SIf a participant is just indifferent at p€, i.e. o + B1pS = 0, then the next actual choice in the experiment
is made for p = p€ + 1/20 and p = p€ — 1/20. The probability of a safe or risky choice there is, hence,
L(B1ix/20) and £(—P1,ix/20). For Bix = 432 we have £(432/20) ~ 1 —4.16 x 1071%, £(—432/20) =~
4.16 x 1017



DROP COUNT LOGIS

B 25% 975% B 25% 975% B 25% 975%

0 -1.267 -2.776 0.171 -0.809 -2.025 0.423 -0.732  -1.962 0.496

n 1.356 0.663 2.050 1.208 0.699 1.702 1.190 0.673 1.692

P 1.130 -0.944  3.290 0.457 -1.322 2.190 0.339 -1.426 2.085
nxp -1172 -2.198 -0.145 -0.909 -1.632 -0.166 -0.876 -1.608 -0.126
o? o 1/0? o’ o 1/0° o’ o 1/0°

\/{k 0.000 0.000 Inf 0.000 0.000 Inf 0.000 0.000 Inf
Vi 0.287 0.536 3.483 0.375 0.612 2.666 0.379 0.616 2.638
€ixt 10.381 3.222 0.096 10.296 3.209 0.097 10.301 3.210 0.097

Table 1: ME estimate of Equations (6).

and more importantly, the noise of these observations allows us to address the errors in
variables problem. If 18% of our participants clearly violate consistency we should, perhaps,
not expect that we can measure the remaining 82% with infinite precision. The inconsistent
18% will allow us to better assess the precision of the remaining 82% consistent observations.

3.3.4. Estimation results for DROP, COUNT and LOGIS

Table [1] shows the estimation results for Equation (6 for different ways to deal with incon-
sistent observations. We see that, regardless which method we use here, the differences are
not very large. We find 3,, between 1.19 and 1.36, 3, is never significant and between 0.339
and 1.13, and anp somewhere between -1.17 and -0.876.

Irrespective of the estimation procedure, a perfectly risk loving subject (p© = 0) increases
her contributions by more than 1 unit in response to any unit of punishment she has re-
ceived in the previous period. The more the participant is risk averse, the less intense her
reaction. Yet even a perfectly risk averse participant (p¢ = 1) still exhibits a small increase

of contributions in reaction to punishment (0.184 < 3y, + Bynxp < 0.313 depending on the
model).

3.4. Correcting for errors in variables - joint estimation of (3) and (6)

The previous three approaches treat the estimation p{, from Equation (3) and the estimation
of the impact of p§,, on Aciy: from Equation (6) as two unrelated problems. Here we suggest
that much can be gained if both problems are estimated together. We will use a Bayesian
approach. We do not want to enter a discussion on the comparative merits of the Bayesian
versus the frequentist framework (Bayarri and Berger, 2004, or Kass, 2011 may provide a
starting point for a discussion). Neyman and Scott (1948) and Solari (1969) have pointed
out deficiencies in the maximum likelihood approach to estimate models with errors in vari-
ables. Bayesian estimation has been shown to work well in the context of errors in variables



models for a long time and for a wide range of situations[| Here we employ the Bayesian
approach, in particular since it facilitates a transparent description of the two processes we
want to estimate jointly. To facilitate the comparison with the frequentist framework we
base our estimations on vague priors[|In a first step we will demonstrate that, as long as the
frequentist and the Bayesian approach estimate similar models, the results are (of course)
almost indistinguishablef]

Likelihoods: The likelihood of the Holt and Laury task is given by Equation (3). We rewrite
Equation (6)) to obtain the likelihood for the public good task as follows:

Acixe ~ N(Bo + BuMikt—1 + BpPik + Brxp Nikt—1 - Pik + Vi + Vi 1/V/Te) (11)

Priors: We use the following (vague) priors{’]

For the coefficients from Equation (11):
B ~ N(0,100) with 1 € {0,n,p,n X p} (12)
The group specific random effect in Equation (11):
vi ~ N(0,1/\/7y); witht, ~T(m?/d%, m,/d%);m, ~T(1,1); dy ~T(1,1) (13)
The individual specific random effect in Equation (11):
Vi ~ N(0,1/y/Ty); with Ty ~ T(m3,/d3,, m,./d3);

my ~T(1,1); dy, ~T(1,1) (14)
For the switching point from the risk task, Equation (3):
Ph ~ Bloe, Be) with ae ~T(2,1/2); Be ~ T(2,1/2) (15)
For the precision of the switching point from Equation (3):
Tk ~ I(m?/d* m/d?); withm ~T(1,1); d ~(10,0.1) (16)
The precision in Equation (11):
Te ~ T(mi/d%,me/d2); withme ~T(1,1); de ~T(1,1) (17)

3.4.1. Replicating LOGIS (B-LOGIS)

Before we come to the results of the joint estimation, let us use the Bayesian framework to
replicate the result of the mixed effect estimation of Equation (6). As above we would treat
both problems as unrelated. We would first estimate p{, for each participant (using Equation

¢ Arminger and Muthén (1998), Dellaportas and Stephens (1995), Florens, Mouchart and Richard (1974) and
Polasek and Krause (1993).

"For a frequentist analysis the Stata package gllamm or the R package lavaan might be useful.

8We use JAGS 4.0.0. to estimate Bayesian models. Estimates are based on four chains with each 1000 samples
for adaptation, 4000 samples for burnin, and then, for each of the four chains, 100000 actual samples per
chain. To estimate the mixed effects model we use 1me4 1.1-12. Frequentist confidence intervals are
based on normal bootstraps with 1000 samples.

We use N(u, o) for the normal distribution, (e, B) for the Gamma distribution and B(«, 3) for the Beta
distribution. The second argument of N(L, o) is the standard deviation. T = 1/0? is the precision. The first
argument of I'(«, 3) is shape «, the second is rate {3.



B-LOGIS
Mean  2.5% 97.5% SSeff  psrf
0 -0.758 -2.120  0.569 40000 1.0000
n 1213 0.664 1.728 40000 1.0000
p 0359 -1.499 2218 39915 1.0000
nxp -0.892 -1.643 -0.105 40000 1.0000
Ty 7.793  1.383 20.341 8491 1.0001
T! 2.260 0350 4.713 27767 1.0000
T 0.097 0.087 0.108 40948 1.0000

Table 2: Estimating Equations and (3) and (11) independently in the Bayesian Framework.
No correction is made for errors in variables. Results are, as they should be, quite similar to the LOGIS or the
COUNT model. We use 4 chains with 100000 samples each.

(3), ignoring the public good game given by (6) and (11)). We would then, as if it was an
independent problem, estimate Equation (6) and (11), ignoring (3). For both steps we use
priors given by (12)-(17). Since the two problems are treated as unrelated, this procedure,
which we call B-LOGIS, can not take into account errors in variables from the estimation
of when estimating (11). Estimation results are shown in Table 2 Here the value for
Brxp is -0.892, i.e. similar to the corresponding estimate of the mixed effects model based
on the LOGIS estimate of pf, (Bnxp = —0.876). Also the value for 3, is with 1.21 similar
to the LOGIS estimate (3 xp = 1.19). Finally, also the value for 3, is with 0.359 similar to
the LOGIS estimate (3,x, = 0.339). All this should be reassuring: If the Bayesian and the
frequentist framework have to solve similar problems, then both get very similar results.

3.4.2. B-JOINT

Next we present results from joinly estimating Equations (3), () and (11). This approach
automatically weighs the individual estimates of the risk attitude by their precision and,
thus, takes into account the errors in variables problem. Priors are as given by Equations

(12-@.

Equation (6): Estimation results (for the entire data set with 72 observations) are shown
in the left part of Table (3| Figure [3[shows the highest posterior density (HPD) and confidence
intervals for our estimates. The Figure illustrates the bias when not correcting for errors in
the measurement of risk. The joint estimate of B-JOINT finds a substantially larger effect
size for B, xp (-3.63) than the estimates we got from the models where we did not control
for errors in variables (between -1.17 and -0.876). In other words: Correcting for errors in
variables (and thereby weighting the individual measure of risk attitude with its precision)
changes the effect size by 210%.

Equation (3): Figure 2] shows the predicted switching points p§, as a solid line. The B-
JOINT estimate for p{, follows the estimates based on COUNT or LOGIS, in particular for

10



B-JOINT B-JOINT-CONSIST
Mean  2.5% 97.5%  SSeft psrf Mean  2.5% 97.5%  SSeft psrf
0 -1.776 -2.998 -0.553 38943 1.0001 0 -2.501 -4.029 -1.024 38800 1.0000
n 3.240 2181 4.346 25802 1.0000 n 4254 3.011 5566 31232 1.0000
p 1763 0.178 3411 37352 1.0001 p 2811 0.763 4930 38514 1.0000
nxp -3.632 -5206 -2.137 23961 1.0000 nxp -5168 -7.040 -3.358 28148 1.0000
T, 6904 1.215 16.860 9374 1.0005 Ty 5431 1.074 12.840 10549 1.0005
T, 2321 0422 4930 27638 1.0002 T, 2538 0.377 5464 27565 1.0000
Te 0.109 0.097 0.122 37981 1.0000 Te 0.114 0.100 0.128 36550 1.0000

Table 3: Joint estimation of Equations (3) and (11).

The joint estimation corrects for errors in variables. The B-JOINT model uses all data (left table). We sample
from 4 chains with 100000 samples each.. B-JOINT-CONSIST uses only consistent participants (right table). We
sample from 4 chains with 100000 samples each.

the central values of p€. For participants where LOGIS and COUNT estimate more extreme
values of p€, B-JOINT takes a more conservative approach. E.g. the extreme risk aversion
of the rightmost participants in Figure [2|is not really in line with the distribution of the
remaining values of p{, . B-JOINT estimates, hence, a smaller precision Tix, and, accordingly,
adjusts the value of p§, more towards the centre of the distribution.

For individuals 13 and 42 (those, who choose the safer lottery more frequently when the
probability of the good outcome was larger) LOGIS estimates with Equation (9) a negative
slope 3; and, hence, a meaningless switching point. For these two individuals the Bayesian
model estimates a precision T;y very close to zero.

The top panel in Figure[2|shows the value of 3, from Equation (9). The panel in the middle
shows the estimated precision Ty from Equation (3). Comparing both panels, one sees that
the B-JOINT estimates are more differentiated. The LOGIS estimates for 3; are either close to
positive or negative infinity, or close to zero. By contrast the B-JOINT estimates for precision
Tix show a more detailed picture of deviation from utility maximising behaviour. For the
consistent choices the estimated parameter for T is rather large with a median value of 57.4.
For the inconsistent choices T covers a range from 1.68 to 47.6.

Selection bias versus errors in variables: While the results of B-JOINT are based on
the entire dataset, including the inconsistent decision makers, we also estimate B-JOINT-
CONSIST, based on the same model but using only data from consistent decision makers. The
right part of Table [3| shows results only for the 59 consistent observations. The comparison
of the two models, B-JOINT and B-JOINT-CONSIST, allows us to decide whether our results
are mainly driven by the correction for errors in variables or by avoiding selection bias.
Both models take into account errors in variables. Both models come to substantial effect
sizes for 1 x p: -5.17 for B-JOINT-CONSIST, and -3.63 for B-JOINT. We see that including or
discarding inconsistent observations does have an effect, however the effect is much smaller
than the error in variables problem. Above we have seen that errors in variables change
the coefficent <, by 210%. Once errors in variables are taken into account, including

11
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Figure 2: Choices, switching points p{, and precision of choice Tix
The bottom panel shows for each participant the actual choices: o if the participant chose the more risky
lottery. Participants are ordered by their median switching points p§, as estimated from the B-JOINT model.
The solid line denotes the median estimated switching points p§, from B-JOINT. The dashed line shows the
estimated switching points from LOGIS. Vertical reference lines denote participants with inconsistent choices,
i.e. with more than one switching point. The panel in the middle shows the estimated values of the participant’s
precision, T, from B-JOINT. The top panel shows the estimated value of 3; from LOGIS.
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Figure 3: Highest posterior density and confidence invervals for Equation (6).
The figure shows 95% confidence intervals for the mixed effects model based on LOGIS, DROP and COUNT
estimates for p{,. The figure also shows 95% HPD intervals for three specifications of the Bayesian model:
B-LOGIS, which is a replication of the B-LOGIS model in the Bayesian framework based on consistent choices
only, B-JOINT-DROP, the joint model based on only consistent choices, and B-JOINT, the joint model for all
choices.

inconsistent observations affects the effect size by only 30%.

4. Simulation

Should one correct for errors in variables? The above result seems to suggest that such a
correction is desirable, but how general is this finding? Here we simulate 100 times a sample
that is similar to the one we studied above. Each sample has a size of 100 participants which
come in 25 groups.

Behaviour in the risk task and in the public good game follows Equations (3) and (L1).
The parameters of the regression are random and in the same order of magnitude as in our
experiment: 3 ~ N(0,2) for L € {0,1,p,n X p}. The random effects have a similar variance:
Vi ~ N(0,4/1/5), v{i, ~ N(0, \/2/_7) €ikt ~ N(0,/10). The risk aversion also follows a
distribution similar to the one in our experiment: p§, ~ B(6.98,3.63), Tii ~ I'(0.847,0.2).

For each of the 100 simulations we obtain an estimate for the coefficients of Equation (6).
Here we are specifically interested in [3,,x. Figure [4| shows for both methods COUNT and
B-JOINT quartiles of the difference between the estimates and the true values, Bn xp — Bnxp-
We see that B-JOINT performs fairly well. The difference fﬁnxp — Bnxp is close to zero. The
estimates of COUNT are clearly biased. They are too large in the negative and too small in
the positive domain. This bias is what we should expect if errors in variables are neglected.
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Figure 4: Simulation results
The figure shows 25%, 50%, and 75% quantiles of a B-spline (df=5) for different values of (3,,xp and for the
different models.

5. Conclusion

We have the impression that a lot can and should be learned from behaviour which looks
inconsistent, i.e. which does not fit the model the experimenter has in mind. We have tried
to make use of seemingly inconsistent data in two ways: directly, by not dropping these
observations, thereby avoiding selection bias, and indirectly by taking more seriously the
lack of precision of all, thereby addressing the errors in variables problem.

We have seen that, at least for our problem, the impact of the selection bias is relatively
small. Instead, we have found the impact of the errors in variables problem substantial. The
aim of this paper is to convince the experimental community that it makes sense to take
errors in variables seriously, and that these errors can be handled in a meaningful, and in
a feasible way. The fact that the Holt and Laury task asks each participant to take multiple
risky choices is not a nuisance. It enables the researcher to assess the precision of his or her
instrument.

But the reanalysis of the example data set also yields a message that is relevant for criminal
policy: the experience of punishment has the most profound effect on individuals who are
risk seeking. Regardless whether we neglect or take into account errors in variables we
always find evidence against hypothesis|1| The size of the effect depends, however, crucially
on whether errors are taken into account. For criminal policy, the result is welcome news.
It has been claimed theoretically that criminals must in equilibrium be risk-seeking (Becker,
1968). Empirical evidence is only correlational, but supports the point (Cochran, Wood and
Arneklev, 1994; De Li, [2004; LaGrange and Silverman, |1999). Hence those individuals whose
behavior society is most interested to change by the experience of punishment are actually
most sensitive to this experience.
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A. Posteriors for o, 3 and p§,

Figure [5| shows the prior and posterior distribution for p¢ and for the parameters &, =
m?/d? B. = m/d? which determine the distribution of T;;. In Equation we assume
P follows a Beta distribution with parameters «. and (3. following a Gamma distribution
(so that a priori p§, follows an almost uniform distribution). The median of the posterior
parameters are x = 7.89 and 3 = 3.95, i.e., as we also see in the Figure, participants do avoid
the extreme values of p¢ and, not surprisingly, are more risk averse than risk loving.

In Equation we assume that the precision T; is drawn from a Gamma distribution. The
median of the posterior shape parameter of this distribution is o« = 1.16 and the median of the
posterior rate parameter is 3 = 0.027. Figure|[6|shows the posterior distribution of Ty as well
as the median values of Tiy for the individual participants. Conceptually, this is not entirely
trivial. Often we assume that “consistent” choices are infinitely precise, i.e. T = co. However,
if some choices, here 18% of all participants, are inconsistent, i.e. contain a substantial lack
of precision (1.68 < T < 47.6), it would be foolish to assume that the remaining 82% choices
are infinitely precise.

How can we assess the precision of choices? In Figure [6| we see how the estimator uses
the 18% inconsistent observations as a handle to estimate the left part of the distribution of
T. On the right side of the distribution the value of 57.4 for the median consistent decision
maker results from the discrete steps in the Holt and Laury (2002) task which implies a finite
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The solid line show the posterior distribution of Tix as in Equation (16). The dotted line shows the distribution
of the median of T;y taken for each participant.
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precision for the consistent choices.

B. Instructions

General Instructions In the following experiment, you can earn a substantial amount of money, de-
pending on your decisions. It is therefore very important that you read these instructions carefully.

During the experiment, any communication whatsoever is forbidden. If you have any questions,
please ask us. Disobeying this rule will lead to exclusion from the experiment and from all payments.

You will in any case receive 4 € for taking part in this experiment. In the first two parts of the experiment,
we do not speak not of €, but instead of Taler. Your entire income from these two parts of the experiment is
hence initially calculated in Taler. The total number of Taler you earn during the experiment is converted into
€ at the end and paid to you in cash, at the rate of

1 Taler = 4 Eurocent.

The experiment consists of four parts. We will start by explaining the first part. You will receive separate

instructions for the other parts.

Part One of the Experiment In the first part of the experiment, there are two roles: A and B. Four
participants who have the role A form a group. One participant who has the role B is allocated to each group.
The computer will randomly assign your role to you at the beginning of the experiment.

On the following pages, we will describe to you the exact procedure of this part of the experiment.

Information on the Exact Procedure of the Experiment This part of the experiment has
two steps. In the first step, role A participants make a decision on contributions to a project. In the second step,
the role B participant can reduce the role A participants’ income. At the start, each role A participant receives
20 Taler, which we refer to in the following as the endowment. Role B participants receive 20 points at the start
of step 2. We explain below how role B participants may use these points.

Step 1: In Step 1, only the four role A participants in a group make a decision. Each role A member’s
decision influences the income of all other role A players in the group. The income of player B is not affected
by this decision. As a role A participant, you have to decide how many of the 20 Taler you wish to invest in a
project and how many you wish to keep for yourself.

If you are a role A player, your income consists of two parts:

1. the Taler you have kept for yourself (“income retained from endowment”)

2. the “income from the project”. The income from the project is calculated as follows:

Your income from the project = 0.4 times the total sum of contributions to the project

Your income is therefore calculated as follows:
(20 Taler - your contribution to the project) + 0.4* (total sum of contributions to the project).

The income from the project of all role A group members is calculated according to the same formula,
i.e.,, each role A group member receives the same income from the project. If, for example, the sum of the
contributions from all role A group members is 60 Taler, then you and all other role A group members receive
an income from the project of 0.4*60 = 24 Taler. If the role A group members have contributed a total of 9 Taler
to the project, then you and all other role A group members receive an income from the project of 0.49 = 3.6
Taler.

For every Taler that you keep for yourself, you earn an income of 1 Taler. If instead you contribute a Taler
from your endowment to your group’s project, the sum of the contributions to the project increases by 1 Taler
and your income from the project increases by 0.4*1 = 0.4 Taler. However, this also means that the income of all
other role A group members increases by 0.4 Taler, so that the total group income increases by 0.4*4 = 1.6 Taler.
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In other words, the other role A group members also profit from your own contributions to the project. In
turn, you also benefit from the other group members’ contributions to the project. For every Taler that another
group member contributes to the project, you earn 0.4*1 = 0.4 Taler.

Please note that the role B participant cannot contribute to the project and does not earn any income from
the project.

Step 2: In Step 2, only the role B participant makes decisions. As role B participant, you may reduce or
maintain the income of every participant in Step 2 by distributing points.

At the beginning of Step 2, the four role A participants and the role B participant are told how much each
of the role A participants has contributed to the project.

As a role B player, you now have to decide, for each of the four role A participants, whether you wish to
distribute points to them and, if so, how many points you wish to distribute to them. You are obliged to enter
a figure. If you do not wish to change the income of a particular role A participant, please enter 0. Should you
choose a number greater than zero, you reduce the income of that particular participant. For each point that
you allocate to a participant, the income of this participant is reduced by 3 Taler.

The total Taler income of a role A participant from both steps is hence calculated using the following formula:

Income from Step 1 — 3 * (sum of points received)

Please note that Taler income at the end of Step 2 can also be negative for role A participants. This can be
the case if the income-subtraction from points received is larger than the income from Step 1. However, the
role B participant can distribute a maximum of 20 points to all four role A members of the group. 20 points
are the maximum limit. As a role B participant, you can also distribute fewer points. It is also possible not to
distribute any points at all.

If you have role B, please state your reasons for your decision to distribute (or not to distribute) points, and
why you distributed a particular number of points, if applicable. In doing this, please try to be factual. Please
enter your statement in the corresponding space on your screen. You have 500 characters max. to do this.
Please note that, in order to send your statement, you will have to press “Enter” once each time. As soon as
you have done this, you will no longer be able to change what you have written.

The income of the role B participant does not depend on the income of the other role A participants, nor
on the income from the project. For taking part in the first part of the experiment, he or she receives a fixed
payment of

1€

In addition, the role B participant receives the sum of 0.01 € for each point that he or she did not distribute.
Once all participants have made their decisions, your screen will show your income for the period and your
total income so far.

After this, the first part of the experiment ends. You will then be told what your payment is for this part of
the experiment. Hence, you will also know how many points you and all other participants have been given
by player B.

Experiences from an Earlier Experiment For your information, we give you the following
graph, which tells you the average contributions made in a very similar experiment that was conducted in this
laboratory.

In this experiment, too, there were groups of 4 role A participants and one role B participant each. The role
A participants’ income was calculated in exactly the same way. The experiment had 10 equal periods. The role
B participant also had 20 points at his disposal in each period. At the end of each period, the role A participants
were told how much each of the other participants had contributed and how the role B participant had reacted
to this.
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Part Two of the Experiment The second part of the experiment consists of 10 repetitions of the first
part. Throughout the entire second part, all participants keep the role they had in the first part of the experiment.
The computer randomly rematches the groups of four in every period. In each period, the computer randomly
assigns a role B participant to each group.

As a reminder: In each period, each role A participant receives 20 Taler, which may be contributed to the
project entirely, in part, or not at all. For each period, calculating the income from the project for the role A
participants in a group happens in exactly the same way as it did in the first part of the experiment. In each
period, each role B participant receives 20 points, which may be used to reduce the income of the players A in
the group. For each point that a role A participant receives in a period, 3 Taler are subtracted. For each point
that a role B participant does not use, he or she is given the sum of 0.01 €. In addition to the income from the
points retained, each role B participant receives a flat fee of 10 € for participating in this second part of the
experiment.

At the beginning of Step 2 of each period, the four role A participants and the role B participant are told
how much each of the role A participants contributed to the project.

Please note that the groups are rematched anew in each period.

After each period, you are told about your individual payoff. You are therefore also informed how many
points you and the other participants have been assigned by the role B participant.

Part Three of the Experiment We will now ask you to make some decisions. In order to do this, you
will be randomly paired with another participant. In several distribution decisions, you will be able to allocate
points to this other participant and to yourself by repeatedly choosing between two distributions, ‘A’ and ‘B’.
The points you allocate to yourself will be paid out to you at the end of the experiment at a rate of 500 points
=1 €. At the same time, you are also randomly assigned to another participant in the experiment, who is, in
turn, also able to allocate points to you by choosing between distributions. This participant is not the same
participant as the one to whom you have been allocating points. The points allocated to you are also credited
to your account. The sum of all points you have allocated to yourself and those allocated to you by the other
participant are paid out to you at the end of the experiment at a rate of 500 points = 1 €. Please note that
the participants assigned to you in this part of the experiment are not the members of your group from the
preceding part of the experiment. You will therefore be dealing with other participants.
The individual decision tasks will look like this:
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Possibility A Possibility B
The points of the par- The points of the par-
Your points: ticipant of the experi- || Your points: ticipant of the experi-
ment allocated to you: ment allocated to you:
0 500 304 397

In this example: If you click ‘A’, you give yourself 0 points and 500 points to the participant allocated to you.
If you click ‘B’, you give yourself 304 points and 397 points to the participant allocated to you.
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