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We provide an example for an errors in variables problem which is quite com-

mon in lab experimental practice but which might o�en be neglected: In one task

participants’ a�itudes are measured, in another task participants’ behaviour is

related to this measurement. How should we deal with imperfect measurements

of these a�itudes?

To illustrate the problem we consider the relation between risk aversion and

punishment behaviour. We know that measurements of the a�itude towards risk

in the lab are o�en noisy or inconsistent. We show that ignoring this noise or

discarding inconsistent observations yields to a quite di�erent estimate of the

relation between a�itude and behaviour.
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1. Introduction
When we run laboratory experiments and when we try to structure the results of these ex-

periments, we sometimes combine two parts of an experiment. In one part of the experiment

we measure individual a�itudes. �ese measurements are used to explain behaviour in an-

other part of the experiment. Clearly, one can not assume that these measurements are free

of any errors. �is presupposes that the measured a�itude will play itself out the same way

whenever it is elicited and in whichever context it happens to ma�er. Di�erential psychology
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has long cast doubt on this assumption. Traits and a�itudes are unlikely to be stable across

situations (Ross, Nisbe� and Gladwell, 2011). �is suggests that a�itudes will o�en only be

imperfectly observed in post-experimental tests.

For the econometrician the problem of an explanatory variable that is only imperfectly ob-

served is well known as one of “errors in variables”. More technically, if we want to estimate

Y = β0 + β1X + u, but we can observe X only with an error, e.g. we observe ξ ∼ N(X,σξ),
then estimating Y = β0 + β1ξ + u with standard OLS provides a biased estimator for β1.

Already Adcock (1877) mentions the problem of errors in variables. Since then many authors

have discussed this problem (see Gillard, 2010, for an overview). Errors in variables are, in-

deed, acknowledged in surveys in the �eld (see, e.g., Kimball, Sahm and Shapiro, 2008, who

use survey data on risk tolerance). De�ciencies in the maximum likelihood approach to es-

timate models with errors in variables were pointed out e.g. by Neyman and Sco� (1948) and

Solari (1969). Lindley and El-Sayyad (1968) and Florens, Mouchart and Richard (1974) have

proposed Bayesian inference to overcome these problems. During the last decades Markov

chain Monte Carlo methods have become a powerful and accessible tool for Bayesian in-

ference. �us, the Bayesian approach lends itself particularly well to estimate models with

errors in variables. In the frequentist world the problem that we outline below could be de-

scribed as a generalised multilevel structural equation (Rabe-Hesketh, Skrondal and Pickles,

2004). In this paper we use the Bayesian approach since we think that it makes the problem

and its solution particularly transparent.

�is brings us to laboratory experiments in economics: Should we worry about errors in

variables in the lab? A�er all, when σξ in the above problem is small, the bias will be small,

too. Perhaps the situations we are studying as experimental economists are of the la�er kind

and the problem is more of academic than of practical interest?

To demonstrate that errors in variables do ma�er for lab data we consider the following

example: In one part of the experiment we measure participants’ a�itudes towards risk with

the help of a Holt and Laury (2002) task.
1

In another part of the experiment we use these

a�itudes to explain reactions to punishment in a public good game. In the Holt and Laury

task, 18% of all participants behave “inconsistently”, in that they switch more than once

between the lo�ery with the smaller and the lo�ery with the larger spread. One of the options

mentioned by Holt and Laury (2002) and used by many experimentalists, is to simply drop

the data from such participants. We show why this solution can be problematic. We discuss

a series of alternatives, and show how a joint estimation of both decision processes o�ers an

easy and e�ective solution. A joint estimation has two advantages: First, one uses the data

from all participants, thus avoiding a selection bias.
2

Second, we can estimate, separately for

each participant, the precision of the measure for her risk a�itude. �is allows us to address

the errors in variables problem. As our sample demonstrates, results change substantially if

one treats the results from the Holt and Laury task as an explanatory variable measured with

error.

�e remainder of the paper is organized as follows: Section 2 introduces the design of

1
As is standard, participants were not admonished to switch at most once.

2
Otherwise one does not estimate the e�ect of risk aversion on punishing behavior in the population, but the

e�ect of risk aversion on the punishing behavior of only those individuals whose reactions to risky choices

are highly consistent.
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the example experiment from which the data are taken and that we use to illustrate our

methodological point. Section 3 discusses alternative methods for dealing with inconsistency

in the measurement of risk a�itudes. Section 4 uses simulations to assess the size of the bias

due to errors in variables in a more general context. Section 5 concludes.

2. Design of the Example Experiment
In our example we study a four-person repeated public good game with punishment. �e

experiment was conducted in the Cologne Laboratory for Economic Research in 2012. �e

experiment was implemented in zTree (Fischbacher, 2007). Participants were invited using

the so�ware ORSEE (Greiner, 2004). Of 90 participants 80 were students of various majors

with a mean age 25.4. 44% were female. Participants on average earned 15.11e (19.82$ on the

days of the experiment), 14.80e for active players, and 16.38e for authorities. �e experiment

had 3 sessions of 30 participants (6 groups of 4 active participants; 6 passive authorities).

�e aim of the experiment is to study the relation between a�itudes to risk and the reaction

to punishment in a public good game. Fehr and Gächter (2000) show that if participants in

a public good game have the possibility to punish each other, contributions in the public

good game stabilize at a high level. Engel (2014) shows that social preferences may make

punishment e�ective even if its expected value is so low that a perfectly sel�sh individual

would not be deterred.

In our example we reanalyze data generated for testing the interplay between social pref-

erences and punishment. �e data is taken from Engel (2014). In this experiment four (active)

participants i ∈ {1, . . . , 4} in group k contribute cikt in round t to linear public good. A ��h

participant a (an authority) has the power to impose a punishment ηikt on each active par-

ticipant. Pro�ts πikt of the active participants and πakt of the authority are given by (1) and

(2):

Pro�t of active participant i: πikt = 20 − cikt + .4

∑
i

cikt − 3ηikt (1)

Pro�t of authority a: πakt = 25 + 20 −
∑
i

ηikt (2)

�e ��h participant gains a �xed period income of 25 tokens. She can use an additional

endowment of 20 tokens to punish any of the active group members. Any token not used

for punishment she keeps for herself. A�er the end of the �rst round, there is a surprise

restart with another 10 rounds of the same game. Participants are rematched every period

to matching groups of size 10.

In the experiment, punishment authority is vested in a participant. Active participants

are matched to one such authority in each period. Active participants are uncertain which

punishment policy the authority will be adopting. �e only information they have is the

experience of having been punished in previous periods. Punishment in the last period is the

most vivid experience. It should have the highest salience, and therefore the strongest e�ect.

�e more they are averse to risk, the stronger this signal should guide their choices in the

subsequent period: risk averse participants loose more utility when punished again.
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Figure 1: Choices in the risk task

�e panel shows choices for each participant: ◦ if the participant chose the lo�ery with the larger spread and

nothing if the participant chose the smaller spread. Vertical reference lines denote participants with inconsistent

choices (see 5). Participants are ordered by their risk a�itudes, with the more risk seeking participants at the

le�.

Hypothesis 1 �e more a participant is risk averse, the more she increases her contributions
to a linear public good a�er having been punished in the previous period.

A�er the main experiment, a ba�ery of post-experimental tests is administered. For the

purposes of this paper, only the test for risk aversion is of interest. �e experiment uses the

test introduced by Holt and Laury (2002). Holt and Laury design a task where participants

choose between a (safe) lo�ery with a small spread, p ·2$+(1−p) ·1.6$, and a (risky) lo�ery

with a large spread, p · 3.85$ + (1 − p) · .1$, where the probability of the good outcome is

p ∈ {.1, .2, .3, . . . , 1}.

3. How to Deal with an Inconsistent Measure for Risk
A�itudes?

In the previous section we have outlined an experiment where for each participant i in group

kwe (imperfectly) measure risk aversion. We expect punishment in a previous round ηik,t−1

to stimulate contribution cikt in the current round. Furthermore we expect that this e�ect is

stronger for more risk averse participants and weaker for more risk loving participants.

3.1. Measuring risk aversion
To test Hypothesis 1, we need for each active participant a measure of her risk aversion.

Choices in the risk task for the 72 participants holding the active role are shown in Figure

1. Choices where a participant chose the lo�ery with the larger spread are denoted with a ◦,
choices where the participant chose the lo�ery with the smaller spread are le� blank.

If we assume that preferences for money follow e.g. CRRA, i.e. u(z) = z1−r
, then the

critical value of pc where participants are indi�erent between the more safe and the more

risky choice is a monotonic function of their relative risk aversion r. We can then either
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describe participants by r or by their critical value of pc. In the following we will use pcik to

describe preferences of individual i in group k.

One way to formalise choices in the Holt and Laury task is the logistic model. �e prob-

ability of a risky choice of individual ik in lo�ery p could be wri�en as follows:

P(riskyik|p) = L ((p− pcik) ·
√
τik) with p ∈ {.1, .2, . . . , 1} (3)

Here L is the logistic function, p describes the probability of the good outcome in the Holt

and Laury task, pcik is be the critical value where participant ik is just indi�erent between

the two choices, and τik is the precision of the observation. For a perfect measurement of a

perfectly consistent decision maker τik would be in�nitely large. A τik = 0 would denote

a decision maker who choses the more risky alternative always with the same probability,

regardless of the value of p. �e smaller τik, the more likely it is to observe inconsistent

choices.

In Figure 1. we have ordered participants from the most risk loving on the le� to the most

risk averse on the right. Ideally, we should expect that each participant i in group k can be

characterized by a single switching point pcik such that the following holds:

choiceik(p) =


risky if p > pcik
either safe or risky if p = pcik
safe if p < pcik

(4)

We call a participant i in group k consistent i�

max{p|choiceik(p) = safe} < min{p|choiceik(p) = risky)} . (5)

For a consistent participant a pcik can be found such that all choices can be rationalised with

Equation (4). Indeed, 82% of the participants in this sample are consistent according to (5). We

call a participant inconsistent if (5) does not hold, i.e. not all their choices can be rationalised

with Equation (4). In Figure 1 vertical reference lines denote participants with inconsistent

choices. �e choices of 18% of the participants are inconsistent.

A certain amount of inconsistent choices is typical for this test. Some researchers react

by using an alternative test that forces consistency. Eckel and Grossman (2008) directly ask

participants for the switching point. Depending on the research question, this may be sat-

isfactory. However, by enforcing consistent choices for pcik we lose information about the

precision τik of that choice. Below we will argue that information about this precision may

be useful.

Before we do this, let us come to the contributions in the public good game.

3.2. Contributions to the public good
To test Hypothesis 1 we have to explain changes in the contribution to the public good∆cikt
as a function of previous punishment η and risk version pcik. We eventually want to estimate

the following model:

∆cikt = β0 + βηηik,t−1 + βpp
c
ik + βη×p ηik,t−1 · pcik + νk + ν ′ik + εikt (6)
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∆cikt is the change of contribution to the public good of individual i from matching group k

at time t. ηik,t−1 is the punishment received by individual i from group k at time t−1, i.e. the

punishment received in the previous period. pcik is a measure for risk aversion of individual

i from group k. νk is a random e�ect for group k. ν ′ik is a random e�ect for individual i

from group k. εikt is the residual. In line with Hypothesis 1 we expect the interaction term

βη×p to be positive.

In the example study, the aim is to explain reactions to punishment as a function of the

a�itude towards risk. �e la�er is described as a switching point pcik in the Holt and Laury

task. In Section 3.3 we comparatively assess four alternative approaches for dealing with

inconsistent choices. All four approaches can be used to estimate Equation (6), but all assume

that pcik could be measured with in�nite precision. As a result none of these four approaches

addresses the errors in variables problem. In Section 3.4.2 we estimate the decision process

determining pcik jointly with Equation (6). �ese approach o�er a solution for the errors in

variables problem.

3.3. No correction for errors in variables
3.3.1. Drop inconsistent observations (DROP)

�is procedure removes from our sample the 18% of the participants which are inconsistent

according to (5). In Figure 2 these are the participants which are crossed out by a vertical

dashed line. For the remaining 82% of our participants we de�ne the switching point as

follows:

p̂c,D
it =

max{p|choiceik(p) = safe}+ min{p|choiceik(p) = risky)}

2

(7)

Figure 2 suggests that inconsistent behaviour could be more likely with risk seeking par-

ticipants. �e DROP procedure might, hence, selectively remove risk seeking participants

from the sample. It also does not tell us anything about the precision of pcik, i.e. it does not

help us to address the errors in variables problem.

3.3.2. Counting the number of safe choices (COUNT)

Holt and Laury (2002) propose to replace the switching point for inconsistent participants

by simply counting the number of safer choices. To ease the comparison with the other

measures we use the following linear transformation:

p̂c,C
it =

1

20

+
1

10

∑
p

[choiceik(p) = safe] (8)

Figure 2 shows the resulting estimates of risk preferences as a thick do�ed line. �is proced-

ure addresses the selection bias but not the errors in variables problem.
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3.3.3. A logistic regression to estimate switching points (LOGIS)

In Equation 3 we have used the logistic model to describe choices in the risk task. We can

rephrase this model as follows:

P(riskyik|p) = L (β0,ik + β1,ikp) where p ∈ {.1, .2, . . . , 1} (9)

�e value of p where the P(riskyik|p) = 1/2, i.e. where individual i in group k chooses the

more risky and the safer lo�ery with equal probabilities, is our estimated switching point

p̂c,L
ik . It is given by

p̂c,L
ik = − ˆβ0,ik/ ˆβ1,ik . (10)

�e dashed line in the bo�om part Figure 2 shows for each individual the critical value p̂c,L
ik

obtained with this method.
3

As Figure 2 demonstrates, the results obtained with LOGIS are

similar to COUNT, except for participants 13 and 42.
4

�e top part of the same �gure shows

for each individual the coe�cient
ˆβ1,ik. When this coe�cient is large then P(riskyik|p) is

either close to 1 or close to 0 for most values of p. A large coe�cient is, hence, a measure of

consistency. When we use maximum likelihood to estimate Equation (9) we should expect

that for consistent choices
ˆβ1,ik → ∞. Since numerical precision is limited we �nd for

consistent choices in our estimation 432 6 | ˆβ1,ik| 6 447 which is clearly smaller than +∞,

but already su�ciently large to make sure that the actual choices are made almost with

certainty.
5

Still, we should keep in mind that it is only numerical imprecision which yields

�nite values where we should see a +∞.

Looking at Figure 2 again we see two (related) problems:

1. For the 18% inconsistent choices we have
ˆβ1,ik 6 13. �ese choices are clearly more

noisy than the 82% consistent choices with
ˆβ1,ik > 432 but it is not obvious how to

exploit this di�erence in precision in our estimate of Equation (6).

2. �e estimation of Equation (9) yields for two participants (13 and 42) negative values

for
ˆβ1 (−6.1 and −445). �ese participants choose the safer lo�ery more frequently

when the probability of the good outcome is larger. �e LOGIS model does not tell us

how one should interpret the data for these cases.

We will argue below that these 18% inconsistent participants can serve two purposes. First,

although their observations are noisy, dropping them would lead to a selection bias. Second,

3
Note that LOGIS (the same way as the Bayesian methods) easily handles “inconsistent” participants. Figure

1 shows that we have 13 such participants in the dataset. We have no participants who, independent of p,

always choose the risky lo�ery. �ese participants would correspond to p̂c,L
ik < 0. We have two participants

who always choose the safe lo�ery. �ey correspond to p̂c,L
ik > 1.

4
Since the logistic model is not fully identi�ed it is only a convenient artefact of the numerical implementation

to �nd a unique answer to the question for the optimal switching point. If a participant has chosen the safer

lo�ery for all choices p 6 .6 and the more risky lo�ery for all choices p > .7, the logistic model will estimate

a switching point just in the middle between .6 and .7 at almost exactly .65.

5
If a participant is just indi�erent at pc, i.e. β0 + β1p

c = 0, then the next actual choice in the experiment

is made for p = pc + 1/20 and p = pc − 1/20. �e probability of a safe or risky choice there is, hence,

L(β1,ik/20) and L(−β1,ik/20). For β1,ik = 432 we have L(432/20) ≈ 1 − 4.16 × 10
−10

, L(−432/20) ≈
4.16× 10

−10
.
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DROP

β 2.5% 97.5%

0 -1.267 -2.776 0.171

η 1.356 0.663 2.050

p 1.130 -0.944 3.290

η× p -1.172 -2.198 -0.145

σ2 σ 1/σ2

ν ′ik 0.000 0.000 Inf

νk 0.287 0.536 3.483

εikt 10.381 3.222 0.096

COUNT

β 2.5% 97.5%

-0.809 -2.025 0.423

1.208 0.699 1.702

0.457 -1.322 2.190

-0.909 -1.632 -0.166

σ2 σ 1/σ2

0.000 0.000 Inf

0.375 0.612 2.666

10.296 3.209 0.097

LOGIS

β 2.5% 97.5%

-0.732 -1.962 0.496

1.190 0.673 1.692

0.339 -1.426 2.085

-0.876 -1.608 -0.126

σ2 σ 1/σ2

0.000 0.000 Inf

0.379 0.616 2.638

10.301 3.210 0.097

Table 1: ME estimate of Equations (6).

and more importantly, the noise of these observations allows us to address the errors in

variables problem. If 18% of our participants clearly violate consistency we should, perhaps,

not expect that we can measure the remaining 82% with in�nite precision. �e inconsistent

18% will allow us to be�er assess the precision of the remaining 82% consistent observations.

3.3.4. Estimation results for DROP, COUNT and LOGIS

Table 1 shows the estimation results for Equation (6) for di�erent ways to deal with incon-

sistent observations. We see that, regardless which method we use here, the di�erences are

not very large. We �nd βη between 1.19 and 1.36, βp is never signi�cant and between 0.339

and 1.13, and
ˆβη×p somewhere between -1.17 and -0.876.

Irrespective of the estimation procedure, a perfectly risk loving subject (pc = 0) increases

her contributions by more than 1 unit in response to any unit of punishment she has re-

ceived in the previous period. �e more the participant is risk averse, the less intense her

reaction. Yet even a perfectly risk averse participant (pc = 1) still exhibits a small increase

of contributions in reaction to punishment (0.184 6 βη + βη×p 6 0.313 depending on the

model).

3.4. Correcting for errors in variables – joint estimation of (3) and (6)

�e previous three approaches treat the estimation pcik from Equation (3) and the estimation

of the impact of pcik on ∆cikt from Equation (6) as two unrelated problems. Here we suggest

that much can be gained if both problems are estimated together. We will use a Bayesian

approach. We do not want to enter a discussion on the comparative merits of the Bayesian

versus the frequentist framework (Bayarri and Berger, 2004, or Kass, 2011 may provide a

starting point for a discussion). Neyman and Sco� (1948) and Solari (1969) have pointed

out de�ciencies in the maximum likelihood approach to estimate models with errors in vari-

ables. Bayesian estimation has been shown to work well in the context of errors in variables
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models for a long time and for a wide range of situations.
6

Here we employ the Bayesian

approach, in particular since it facilitates a transparent description of the two processes we

want to estimate jointly. To facilitate the comparison with the frequentist framework we

base our estimations on vague priors.
7

In a �rst step we will demonstrate that, as long as the

frequentist and the Bayesian approach estimate similar models, the results are (of course)

almost indistinguishable.
8

Likelihoods: �e likelihood of the Holt and Laury task is given by Equation (3). We rewrite

Equation (6) to obtain the likelihood for the public good task as follows:

∆cikt ∼ N(β0 + βηηik,t−1 + βpp
c
ik + βη×p ηik,t−1 · pcik + νk + ν ′ik, 1/

√
τε) (11)

Priors: We use the following (vague) priors:
9

For the coe�cients from Equation (11):

βl ∼ N(0, 100) with l ∈ {0,η,p,η× p} (12)

�e group speci�c random e�ect in Equation (11):

νk ∼ N(0, 1/
√
τν); with τν ∼ Γ(m

2

ν/d
2

ν,mν/d
2

ν);mν ∼ Γ(1, 1); dν ∼ Γ(1, 1) (13)

�e individual speci�c random e�ect in Equation (11):

ν ′ik ∼ N(0, 1/
√
τν ′); with τν ′ ∼ Γ(m

2

ν ′/d
2

ν ′ ,mν ′/d
2

ν ′);

mν ′ ∼ Γ(1, 1); dν ′ ∼ Γ(1, 1) (14)

For the switching point from the risk task, Equation (3):

pcik ∼ B(αc,βc) with αc ∼ Γ(2, 1/2);βc ∼ Γ(2, 1/2) (15)

For the precision of the switching point from Equation (3):

τik ∼ Γ(m
2/d2

,m/d2); withm ∼ Γ(1, 1); d ∼ Γ(10, 0.1) (16)

�e precision in Equation (11):

τε ∼ Γ(m
2

ε/d
2

ε,mε/d
2

ε); withmε ∼ Γ(1, 1); dε ∼ Γ(1, 1) (17)

3.4.1. Replicating LOGIS (B-LOGIS)

Before we come to the results of the joint estimation, let us use the Bayesian framework to

replicate the result of the mixed e�ect estimation of Equation (6). As above we would treat

both problems as unrelated. We would �rst estimate pcik for each participant (using Equation

6
Arminger and Muthén (1998), Dellaportas and Stephens (1995), Florens, Mouchart and Richard (1974) and

Polasek and Krause (1993).

7
For a frequentist analysis the Stata package gllamm or the R package lavaan might be useful.

8
We use JAGS 4.0.0. to estimate Bayesian models. Estimates are based on four chains with each 1000 samples

for adaptation, 4000 samples for burnin, and then, for each of the four chains, 100000 actual samples per

chain. To estimate the mixed e�ects model we use lme4 1.1-12. Frequentist con�dence intervals are

based on normal bootstraps with 1000 samples.

9
We use N(µ,σ) for the normal distribution, Γ(α,β) for the Gamma distribution and B(α,β) for the Beta

distribution. �e second argument of N(µ,σ) is the standard deviation. τ = 1/σ2
is the precision. �e �rst

argument of Γ(α,β) is shape α, the second is rate β.
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B-LOGIS

Mean 2.5% 97.5% SSe� psrf

0 -0.758 -2.120 0.569 40000 1.0000

η 1.213 0.664 1.728 40000 1.0000

p 0.359 -1.499 2.218 39915 1.0000

η× p -0.892 -1.643 -0.105 40000 1.0000

τν 7.793 1.383 20.341 8491 1.0001

τ ′ν 2.260 0.350 4.713 27767 1.0000

τε 0.097 0.087 0.108 40948 1.0000

Table 2: Estimating Equations and (3) and (11) independently in the Bayesian Framework.

No correction is made for errors in variables. Results are, as they should be, quite similar to the LOGIS or the

COUNT model. We use 4 chains with 100000 samples each.

(3), ignoring the public good game given by (6) and (11)). We would then, as if it was an

independent problem, estimate Equation (6) and (11), ignoring (3). For both steps we use

priors given by (12)-(17). Since the two problems are treated as unrelated, this procedure,

which we call B-LOGIS, can not take into account errors in variables from the estimation

of (11) when estimating (11). Estimation results are shown in Table 2. Here the value for

βη×p is -0.892, i.e. similar to the corresponding estimate of the mixed e�ects model based

on the LOGIS estimate of pcik (βη×p = −0.876). Also the value for βη is with 1.21 similar

to the LOGIS estimate (βη×p = 1.19). Finally, also the value for βp is with 0.359 similar to

the LOGIS estimate (βη×p = 0.339). All this should be reassuring: If the Bayesian and the

frequentist framework have to solve similar problems, then both get very similar results.

3.4.2. B-JOINT

Next we present results from joinly estimating Equations (3), (6) and (11). �is approach

automatically weighs the individual estimates of the risk a�itude by their precision and,

thus, takes into account the errors in variables problem. Priors are as given by Equations

(12)-(17).

Equation (6): Estimation results (for the entire data set with 72 observations) are shown

in the le� part of Table 3. Figure 3 shows the highest posterior density (HPD) and con�dence

intervals for our estimates. �e Figure illustrates the bias when not correcting for errors in

the measurement of risk. �e joint estimate of B-JOINT �nds a substantially larger e�ect

size for βη×p (-3.63) than the estimates we got from the models where we did not control

for errors in variables (between -1.17 and -0.876). In other words: Correcting for errors in

variables (and thereby weighting the individual measure of risk a�itude with its precision)

changes the e�ect size by 210%.

Equation (3): Figure 2 shows the predicted switching points pcik as a solid line. �e B-

JOINT estimate for pcik follows the estimates based on COUNT or LOGIS, in particular for
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B-JOINT B-JOINT-CONSIST

Mean 2.5% 97.5% SSe� psrf

0 -1.776 -2.998 -0.553 38943 1.0001

η 3.240 2.181 4.346 25802 1.0000

p 1.763 0.178 3.411 37352 1.0001

η× p -3.632 -5.206 -2.137 23961 1.0000

τν 6.904 1.215 16.860 9374 1.0005

τ ′ν 2.321 0.422 4.930 27638 1.0002

τε 0.109 0.097 0.122 37981 1.0000

Mean 2.5% 97.5% SSe� psrf

0 -2.501 -4.029 -1.024 38800 1.0000

η 4.254 3.011 5.566 31232 1.0000

p 2.811 0.763 4.930 38514 1.0000

η× p -5.168 -7.040 -3.358 28148 1.0000

τν 5.431 1.074 12.840 10549 1.0005

τ ′ν 2.538 0.377 5.464 27565 1.0000

τε 0.114 0.100 0.128 36550 1.0000

Table 3: Joint estimation of Equations (3) and (11).

�e joint estimation corrects for errors in variables. �e B-JOINT model uses all data (le� table). We sample

from 4 chains with 100000 samples each.. B-JOINT-CONSIST uses only consistent participants (right table). We

sample from 4 chains with 100000 samples each.

the central values of pc. For participants where LOGIS and COUNT estimate more extreme

values of pc, B-JOINT takes a more conservative approach. E.g. the extreme risk aversion

of the rightmost participants in Figure 2 is not really in line with the distribution of the

remaining values of pcik. B-JOINT estimates, hence, a smaller precision τik, and, accordingly,

adjusts the value of pcik more towards the centre of the distribution.

For individuals 13 and 42 (those, who choose the safer lo�ery more frequently when the

probability of the good outcome was larger) LOGIS estimates with Equation (9) a negative

slope β1 and, hence, a meaningless switching point. For these two individuals the Bayesian

model estimates a precision τik very close to zero.

�e top panel in Figure 2 shows the value of β1 from Equation (9). �e panel in the middle

shows the estimated precision τik from Equation (3). Comparing both panels, one sees that

the B-JOINT estimates are more di�erentiated. �e LOGIS estimates forβ1 are either close to

positive or negative in�nity, or close to zero. By contrast the B-JOINT estimates for precision

τik show a more detailed picture of deviation from utility maximising behaviour. For the

consistent choices the estimated parameter for τ is rather large with a median value of 57.4.

For the inconsistent choices τ covers a range from 1.68 to 47.6.

Selection bias versus errors in variables: While the results of B-JOINT are based on

the entire dataset, including the inconsistent decision makers, we also estimate B-JOINT-

CONSIST, based on the same model but using only data from consistent decision makers. �e

right part of Table 3 shows results only for the 59 consistent observations. �e comparison

of the two models, B-JOINT and B-JOINT-CONSIST, allows us to decide whether our results

are mainly driven by the correction for errors in variables or by avoiding selection bias.

Both models take into account errors in variables. Both models come to substantial e�ect

sizes for η× p: -5.17 for B-JOINT-CONSIST, and -3.63 for B-JOINT. We see that including or

discarding inconsistent observations does have an e�ect, however the e�ect is much smaller

than the error in variables problem. Above we have seen that errors in variables change

the coe�cent βη×p by 210%. Once errors in variables are taken into account, including
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Figure 2: Choices, switching points pcik and precision of choice τik
�e bo�om panel shows for each participant the actual choices: ◦ if the participant chose the more risky

lo�ery. Participants are ordered by their median switching points pcik as estimated from the B-JOINT model.

�e solid line denotes the median estimated switching points pcik from B-JOINT. �e dashed line shows the

estimated switching points from LOGIS. Vertical reference lines denote participants with inconsistent choices,

i.e. with more than one switching point. �e panel in the middle shows the estimated values of the participant’s

precision, τ, from B-JOINT. �e top panel shows the estimated value of β1 from LOGIS.
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Figure 3: Highest posterior density and con�dence invervals for Equation (6).

�e �gure shows 95% con�dence intervals for the mixed e�ects model based on LOGIS, DROP and COUNT

estimates for pcik. �e �gure also shows 95% HPD intervals for three speci�cations of the Bayesian model:

B-LOGIS, which is a replication of the B-LOGIS model in the Bayesian framework based on consistent choices

only, B-JOINT-DROP, the joint model based on only consistent choices, and B-JOINT, the joint model for all

choices.

inconsistent observations a�ects the e�ect size by only 30%.

4. Simulation
Should one correct for errors in variables? �e above result seems to suggest that such a

correction is desirable, but how general is this �nding? Here we simulate 100 times a sample

that is similar to the one we studied above. Each sample has a size of 100 participants which

come in 25 groups.

Behaviour in the risk task and in the public good game follows Equations (3) and (11).

�e parameters of the regression are random and in the same order of magnitude as in our

experiment: βl ∼ N(0, 2) for l ∈ {0,η,p,η× p}. �e random e�ects have a similar variance:

νk ∼ N(0,

√
1/5), ν ′ik ∼ N(0,

√
2/7), εikt ∼ N(0,

√
10). �e risk aversion also follows a

distribution similar to the one in our experiment: pcik ∼ B(6.98, 3.63), τik ∼ Γ(0.847, 0.2).
For each of the 100 simulations we obtain an estimate for the coe�cients of Equation (6).

Here we are speci�cally interested in βη×p. Figure 4 shows for both methods COUNT and

B-JOINT quartiles of the di�erence between the estimates and the true values,
ˆβη×p−βη×p.

We see that B-JOINT performs fairly well. �e di�erence
ˆβη×p − βη×p is close to zero. �e

estimates of COUNT are clearly biased. �ey are too large in the negative and too small in

the positive domain. �is bias is what we should expect if errors in variables are neglected.
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Figure 4: Simulation results

�e �gure shows 25%, 50%, and 75% quantiles of a B-spline (df=5) for di�erent values of βη×p and for the

di�erent models.

5. Conclusion
We have the impression that a lot can and should be learned from behaviour which looks

inconsistent, i.e. which does not �t the model the experimenter has in mind. We have tried

to make use of seemingly inconsistent data in two ways: directly, by not dropping these

observations, thereby avoiding selection bias, and indirectly by taking more seriously the

lack of precision of all, thereby addressing the errors in variables problem.

We have seen that, at least for our problem, the impact of the selection bias is relatively

small. Instead, we have found the impact of the errors in variables problem substantial. �e

aim of this paper is to convince the experimental community that it makes sense to take

errors in variables seriously, and that these errors can be handled in a meaningful, and in

a feasible way. �e fact that the Holt and Laury task asks each participant to take multiple

risky choices is not a nuisance. It enables the researcher to assess the precision of his or her

instrument.

But the reanalysis of the example data set also yields a message that is relevant for criminal

policy: the experience of punishment has the most profound e�ect on individuals who are

risk seeking. Regardless whether we neglect or take into account errors in variables we

always �nd evidence against hypothesis 1. �e size of the e�ect depends, however, crucially

on whether errors are taken into account. For criminal policy, the result is welcome news.

It has been claimed theoretically that criminals must in equilibrium be risk-seeking (Becker,

1968). Empirical evidence is only correlational, but supports the point (Cochran, Wood and

Arneklev, 1994; De Li, 2004; LaGrange and Silverman, 1999). Hence those individuals whose

behavior society is most interested to change by the experience of punishment are actually

most sensitive to this experience.
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A. Posteriors for ατ, βτ and pcik
Figure 5 shows the prior and posterior distribution for pc and for the parameters ατ =
m2/d2

, βτ = m/d2
which determine the distribution of τik. In Equation (15) we assume

pcik follows a Beta distribution with parameters αc and βc following a Gamma distribution

(so that a priori pcik follows an almost uniform distribution). �e median of the posterior

parameters are α = 7.89 and β = 3.95, i.e., as we also see in the Figure, participants do avoid

the extreme values of pc and, not surprisingly, are more risk averse than risk loving.

In Equation (16) we assume that the precision τik is drawn from a Gamma distribution. �e

median of the posterior shape parameter of this distribution isα = 1.16 and the median of the

posterior rate parameter isβ = 0.027. Figure 6 shows the posterior distribution of τik as well

as the median values of τik for the individual participants. Conceptually, this is not entirely

trivial. O�en we assume that “consistent” choices are in�nitely precise, i.e. τ = ∞. However,

if some choices, here 18% of all participants, are inconsistent, i.e. contain a substantial lack

of precision (1.68 6 τ 6 47.6), it would be foolish to assume that the remaining 82% choices

are in�nitely precise.

How can we assess the precision of choices? In Figure 6 we see how the estimator uses

the 18% inconsistent observations as a handle to estimate the le� part of the distribution of

τ. On the right side of the distribution the value of 57.4 for the median consistent decision

maker results from the discrete steps in the Holt and Laury (2002) task which implies a �nite
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Figure 6: Precision of choices for τik
�e solid line show the posterior distribution of τik as in Equation (16). �e do�ed line shows the distribution

of the median of τik taken for each participant.
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precision for the consistent choices.

B. Instructions
General Instructions In the following experiment, you can earn a substantial amount of money, de-

pending on your decisions. It is therefore very important that you read these instructions carefully.

During the experiment, any communication whatsoever is forbidden. If you have any questions,

please ask us. Disobeying this rule will lead to exclusion from the experiment and from all payments.

You will in any case receive 4 e for taking part in this experiment. In the �rst two parts of the experiment,

we do not speak not of e, but instead of Taler. Your entire income from these two parts of the experiment is

hence initially calculated in Taler. �e total number of Taler you earn during the experiment is converted into

e at the end and paid to you in cash, at the rate of

1 Taler = 4 Eurocent.

�e experiment consists of four parts. We will start by explaining the �rst part. You will receive separate

instructions for the other parts.

Part One of the Experiment In the �rst part of the experiment, there are two roles: A and B. Four

participants who have the role A form a group. One participant who has the role B is allocated to each group.

�e computer will randomly assign your role to you at the beginning of the experiment.

On the following pages, we will describe to you the exact procedure of this part of the experiment.

Information on the Exact Procedure of the Experiment �is part of the experiment has

two steps. In the �rst step, role A participants make a decision on contributions to a project. In the second step,

the role B participant can reduce the role A participants’ income. At the start, each role A participant receives

20 Taler, which we refer to in the following as the endowment. Role B participants receive 20 points at the start

of step 2. We explain below how role B participants may use these points.

Step 1: In Step 1, only the four role A participants in a group make a decision. Each role A member’s

decision in�uences the income of all other role A players in the group. �e income of player B is not a�ected

by this decision. As a role A participant, you have to decide how many of the 20 Taler you wish to invest in a

project and how many you wish to keep for yourself.

If you are a role A player, your income consists of two parts:

1. the Taler you have kept for yourself (“income retained from endowment”)

2. the “income from the project”. �e income from the project is calculated as follows:

Your income from the project = 0.4 times the total sum of contributions to the project

Your income is therefore calculated as follows:

(20 Taler – your contribution to the project) + 0.4* (total sum of contributions to the project).

�e income from the project of all role A group members is calculated according to the same formula,

i.e., each role A group member receives the same income from the project. If, for example, the sum of the

contributions from all role A group members is 60 Taler, then you and all other role A group members receive

an income from the project of 0.4*60 = 24 Taler. If the role A group members have contributed a total of 9 Taler

to the project, then you and all other role A group members receive an income from the project of 0.4*9 = 3.6

Taler.

For every Taler that you keep for yourself, you earn an income of 1 Taler. If instead you contribute a Taler

from your endowment to your group’s project, the sum of the contributions to the project increases by 1 Taler

and your income from the project increases by 0.4*1 = 0.4 Taler. However, this also means that the income of all

other role A group members increases by 0.4 Taler, so that the total group income increases by 0.4*4 = 1.6 Taler.
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In other words, the other role A group members also pro�t from your own contributions to the project. In

turn, you also bene�t from the other group members’ contributions to the project. For every Taler that another

group member contributes to the project, you earn 0.4*1 = 0.4 Taler.

Please note that the role B participant cannot contribute to the project and does not earn any income from

the project.

Step 2: In Step 2, only the role B participant makes decisions. As role B participant, you may reduce or

maintain the income of every participant in Step 2 by distributing points.

At the beginning of Step 2, the four role A participants and the role B participant are told how much each

of the role A participants has contributed to the project.

As a role B player, you now have to decide, for each of the four role A participants, whether you wish to

distribute points to them and, if so, how many points you wish to distribute to them. You are obliged to enter

a �gure. If you do not wish to change the income of a particular role A participant, please enter 0. Should you

choose a number greater than zero, you reduce the income of that particular participant. For each point that

you allocate to a participant, the income of this participant is reduced by 3 Taler.

�e total Taler income of a role A participant from both steps is hence calculated using the following formula:

Income from Step 1 – 3 * (sum of points received)

Please note that Taler income at the end of Step 2 can also be negative for role A participants. �is can be

the case if the income-subtraction from points received is larger than the income from Step 1. However, the

role B participant can distribute a maximum of 20 points to all four role A members of the group. 20 points

are the maximum limit. As a role B participant, you can also distribute fewer points. It is also possible not to

distribute any points at all.

If you have role B, please state your reasons for your decision to distribute (or not to distribute) points, and

why you distributed a particular number of points, if applicable. In doing this, please try to be factual. Please

enter your statement in the corresponding space on your screen. You have 500 characters max. to do this.

Please note that, in order to send your statement, you will have to press “Enter” once each time. As soon as

you have done this, you will no longer be able to change what you have wri�en.

�e income of the role B participant does not depend on the income of the other role A participants, nor

on the income from the project. For taking part in the �rst part of the experiment, he or she receives a �xed

payment of

1 e.

In addition, the role B participant receives the sum of 0.01 e for each point that he or she did not distribute.

Once all participants have made their decisions, your screen will show your income for the period and your

total income so far.

A�er this, the �rst part of the experiment ends. You will then be told what your payment is for this part of

the experiment. Hence, you will also know how many points you and all other participants have been given

by player B.

Experiences from an Earlier Experiment For your information, we give you the following

graph, which tells you the average contributions made in a very similar experiment that was conducted in this

laboratory.

In this experiment, too, there were groups of 4 role A participants and one role B participant each. �e role

A participants’ income was calculated in exactly the same way. �e experiment had 10 equal periods. �e role

B participant also had 20 points at his disposal in each period. At the end of each period, the role A participants

were told how much each of the other participants had contributed and how the role B participant had reacted

to this.
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Part Two of the Experiment �e second part of the experiment consists of 10 repetitions of the �rst

part. �roughout the entire second part, all participants keep the role they had in the �rst part of the experiment.

�e computer randomly rematches the groups of four in every period. In each period, the computer randomly

assigns a role B participant to each group.

As a reminder: In each period, each role A participant receives 20 Taler, which may be contributed to the

project entirely, in part, or not at all. For each period, calculating the income from the project for the role A

participants in a group happens in exactly the same way as it did in the �rst part of the experiment. In each

period, each role B participant receives 20 points, which may be used to reduce the income of the players A in

the group. For each point that a role A participant receives in a period, 3 Taler are subtracted. For each point

that a role B participant does not use, he or she is given the sum of 0.01 e. In addition to the income from the

points retained, each role B participant receives a �at fee of 10 e for participating in this second part of the

experiment.

At the beginning of Step 2 of each period, the four role A participants and the role B participant are told

how much each of the role A participants contributed to the project.

Please note that the groups are rematched anew in each period.

A�er each period, you are told about your individual payo�. You are therefore also informed how many

points you and the other participants have been assigned by the role B participant.

Part Three of the Experiment We will now ask you to make some decisions. In order to do this, you

will be randomly paired with another participant. In several distribution decisions, you will be able to allocate

points to this other participant and to yourself by repeatedly choosing between two distributions, ‘A’ and ‘B’.

�e points you allocate to yourself will be paid out to you at the end of the experiment at a rate of 500 points

= 1 e. At the same time, you are also randomly assigned to another participant in the experiment, who is, in

turn, also able to allocate points to you by choosing between distributions. �is participant is not the same

participant as the one to whom you have been allocating points. �e points allocated to you are also credited

to your account. �e sum of all points you have allocated to yourself and those allocated to you by the other

participant are paid out to you at the end of the experiment at a rate of 500 points = 1 e. Please note that

the participants assigned to you in this part of the experiment are not the members of your group from the

preceding part of the experiment. You will therefore be dealing with other participants.

�e individual decision tasks will look like this:
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Possibility A

Your points:

�e points of the par-

ticipant of the experi-

ment allocated to you:

0 500

A

Possibility B

Your points:

�e points of the par-

ticipant of the experi-

ment allocated to you:

304 397

B

In this example: If you click ‘A’, you give yourself 0 points and 500 points to the participant allocated to you.

If you click ‘B’, you give yourself 304 points and 397 points to the participant allocated to you.
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