Notation The following notation is used interchangeably to denote derivatives:

Leibniz's (1675) notation: $\frac{d f}{d x}$ and $\frac{d^{2} f}{d x^{2}}$ for x the first and second derivative.

Lagrange's (1772) notation: $f^{\prime}, f^{\prime \prime}$ for the first and second derivative. This notation is shorter but assumes that we know that derivates are taken with respect to x.

Taking the first derivative of f^{\prime} we obtain the second derivative $f^{\prime \prime}$.

Note that we write f and $f(x)$ interchangeably. The former is shorter, but it assumes that we know that f is actually a function of x.

Optimisation

- Minimum: $f^{\prime}(x)=0$ and $f^{\prime \prime}(x)>0$
- Maximum: $f^{\prime}(x)=0$ and $f^{\prime \prime}(x)<0$ x.

$f=$	$f^{\prime}=$
a	0
$a u$	$a u^{\prime}$
$u+v$	$u^{\prime}+v^{\prime}$
$u v$	$u^{\prime} v+u v^{\prime}$
$u(v)$	$u^{\prime}(v) v^{\prime}$
$\frac{u}{v}$	$\frac{u^{\prime} v-v^{\prime} u}{v^{2}}$
x^{n}	$n x^{n-1}$
e^{x}	e^{x}
$\ln x$	$1 / x$
$\sin x$	$\cos x$
$\cos x$	$-\sin x$

Differentiation rules In the following a is a constant and u, v and f are functions of
-

