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Abstract

We study experiments in an auction setting with interdependent valuation.

Groups of three players receive private signals and then bid for a single, indivis-

ible item. Valuations for the item differ within groups and depend asymmetrically

on a bidder’s own and other bidders’ signals. Theoretically, the English auction

yields efficient allocations, while other standard auction formats fail to do so.

Consistent with equilibrium predictions, we find that an English auction yields

significantly more efficiency than a second-price sealed-bid auction.

We also study the seller’s expected revenue and the bidders expected profits,

and find that the experimental results are close to the theoretical predictions. (JEL

C92, D44)
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1 Introduction

Consider an auction for a license to operate third-generation mobile telephony in a cer-

tain geographic area, and assume that one telecom firm conducts a survey of residential

customers in order to forecast future demand. It is obvious that the survey’s outcome will

be valuable (e.g., affect valuations for the license) for other competitors as well. It is also

likely that competitors that differ in their business plans will attach different weights to

this information. For example a firm which plans to focus on businesses customers will

attach another weight than a firm focused on residential customers. Even if several firms

conduct such surveys, the weights attached to the gained information may be different.

For example, a potential new entrant may highly value the information available to an

incumbent, but not vice-versa. What rules should we choose for the auction in order

to ensure that the license is sold to the firm that values it most? Are theoretically de-

rived rules indeed likely to yield efficiency in practice? What are the connections between

efficiency and revenue?

The answers to the above questions are by no means trivial, and the difficulties are due

to the combined presence of both asymmetric and interdependent valuations. The term

“interdependent” refers here to the fact that the valuation of a particular agent depends

also on information available to other agents. In the purely common value case (where

the object has a true value which is the same for all agents, but agents get different

signals about it) efficiency is trivial, and is attained by all standard auctions (Dutch,

English, first-price sealed-bid, second-price sealed-bid). In a symmetric private value case

(where all agents share the same valuation function, but an agent’s realized valuation

depends solely on a signal available to that agent) all standard auctions are efficient and

revenue equivalent if signals are independent1. No matter how signals are generated, and

1The English or second-price auction are efficient even if bidders with private values are asymmetric,

but this does not hold for the Dutch or first-price sealed-bid format (see Vickrey 1961). In a symmetric

interdependent values setting Milgrom and Weber (1982) showed that the English auction achieves a
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no matter how many objects are auctioned, an efficient allocation can be attained in the

private values case by using a so-called Clarke-Groves-Vickrey mechanism. Following the

theoretical developments, most of the experimental literature on auctions and bidding2

considered situations where values are either private or purely common.

But, as our opening example suggests, many interesting, real-life applications will in-

volve asymmetric interdependent values. Recognising this fact, a growing recent literature

is concerned with the study of efficient allocation procedures in such settings3. Maskin

(1992) pointed out that a single-crossing condition, which requires that a bidder’s signal

must have a higher impact on that bidder’s value than on the opponents’ values, is suffi-

cient to ensure that the English auction is efficient in a framework with two asymmetric

bidders having interdependent valuations for one object. By extending this single-crossing

condition, Krishna (2000) identified two classes of settings where the English auction con-

tinues to be efficient even if there are more than two bidders. But, in general, the English

auction with more players may fail to have an efficient equilibrium (see Perry and Reny

(1999a) who also construct an alternative procedure).

In this paper we focus on an experimental setting with asymmetric, interdependent

valuations: There is one object for sale, and there are three bidders (imagine them sitting

at a round table). Each bidder receives a signal, and her valuation for the object is

equal to her signal plus a constant weight multiplied by the (unobserved) signal of that

bidder’s right neighbour. Relating the asymmetry to a physical position (left or right)

is a simple experimental device with which we approximate the asymmetries typically

found in practice (see example above). The “symmetry in the asymmetry” used here is

only a simplification, adopted in order to create a manageable biding environment (which

higher revenue than all other formats.
2See Kagel (1995) for an excellent survey of this literature.
3See Maskin (1992), Maskin (2000), Dasgupta and Maskin (2000), Eso and Maskin (1999), Jehiel and

Moldovanu (1998), Krishna (2000), Fieseler, Kittsteiner, and Moldovanu (2000), Perry and Reny (1999a),

Perry and Reny (1999b).
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is already complex since bidders may need to use sophisticated inference and bidding

methods). We, therefore, chose to focus in a first study on one of the simplest possible

settings that still allow our type of analysis. The “cyclical crossing” setting identified by

Krishna (2000) is in fact a generalisation of the present one, and we can be sure that the

English auction in our setting has an efficient equilibrium. The second-price sealed-bid

auction, however, is not necessarily efficient since (due to the asymmetry) the agent with

the highest signal may not have the highest value for the object. This shows that the

task of aggregating the private information in order to award the object to the agent with

the highest valuation is not easy. Besides forming estimates about valuations, our agents

have to solve a non-trivial bidding problem where the “winner’s curse” phenomenon plays

a role.

The English auction achieves efficiency because relevant private information is gradu-

ally revealed during the auction process. In contrast, in a sealed-bid (or Dutch) auction

a bidder must bid without any specific information about the realisations of competitors’

signals (which affect that bidder’s value). Finally, since the English auction is efficient

while the other auction formats are not, the standard auctions are not necessarily revenue

equivalent in our framework.

Given the above remarks, it is clear that the asymmetric interdependent valuations

setting provides an excellent framework to experimentally test the efficiency and revenue

properties of standard auctions.

We are not aware of any controlled laboratory experiment that studies auctions with

asymmetric interdependent valuations. In the past experimentalists have concentrated

on two extreme cases: Auctions with private valuations or auctions with purely common

valuations. Let us briefly review these in order:

In the case of private values most experiments studied the case where signals are sym-

metrically distributed. Theoretically, the standard auctions formats should generate the

same expected revenue and efficient allocation. In the laboratory, however, experimental-
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ists found different revenues or efficiency properties of the different auction formats (see

for example Coppinger, Smith, and Titus 1980, Cox, Roberson, and Smith 1982, Kagel,

Harstad, and Levin 1987, Harstad 1990, Kagel and Levin 1993) which allowed them to

study risk aversion, learning and understanding of participants in the auction situation.

Most authors found bids to be higher in first-price sealed-bid auctions than in Dutch

auctions, and also higher in second-price sealed-bid auctions than in English auctions.4

Next, experimentalists have studied modifications of this framework where the standard

auctions have theoretically different properties. The following two examples should illus-

trate this approach: With affiliated private values a first-price sealed-bid auction should

theoretically generate less revenue than an English or second-price auction. This finding

could not be replicated in the laboratory (Kagel, Harstad, and Levin 1987). In the case

of multi-unit multi-value auctions a Vickrey auction should theoretically generate more

efficiency and more revenue than a uniform price sealed-bid auction. In the laboratory

the Vickrey auction, implemented in the ascending form proposed by Ausubel (1997), is

indeed more efficient but raises, in contrast to the theory, less revenue than a uniform

price sealed-bid (Kagel and Levin 2001).

In the purely common value case a bidder’s expected profit should theoretically be

larger with a first-price sealed-bid auction than with an English auction. In the laboratory,

however, the reverse is true (Kagel and Levin 1992). The reason is the winner’s curse

(Bazerman and Samuelson 1983, Kagel and Levin 1986), which is much stronger in the

first-price sealed-bid auction than in the English auction. Revealing relevant information

publicly should theoretically increase the seller’s revenue (Milgrom and Weber 1982).

Experimentally this is the case for situations with a small number of bidders, but for

situations with a large number of bidders introducing public information reduces revenue

4Cox, Roberson, and Smith (1982) find bids in the second-price sealed-bid auction to be lower than in

the English auction which is sometimes explained by the restrictive range of bids subjects could choose

from in the experiment.
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(Kagel and Levin 1986). The reason for this finding is, again, the winner’s curse which is

particularly strong in situations with a large number of bidders.

In the current paper we study the case of asymmetric interdependent valuations.

There, again, we have a theoretical prediction: The English auction should generate

efficient allocations in situations where the second-price sealed-bid auction does not. But

it is not ex-ante clear whether this theoretical property carries over to the laboratory

since theoretical bidding functions in the English auction are more complex than those in

the second-price sealed-bid auction since bids must be revised as information is gradually

revealed. For our analysis this means that we will concentrate on a specific difference be-

tween these two auction formats: the greater potential of the English auction to generate

efficient allocations, and the more complex bidding functions in the English auction.

The paper is organised as follows: In section 2 we describe the experimental setup. In

section 3 we compute equilibria for an English auction and for a second-price sealed-bid

auction. We show that the English auction yields efficient allocations, while the second-

price sealed-bid auction yields efficient allocations only if the agent with the highest

signal has also the highest valuation for the object. Finally, we compute ex-ante expected

revenues for the seller, and ex-ante expected profits for the bidders. We find that the

seller’s expected revenue is the same in the English auction as in the second-price sealed-

bid auction. The bidders expect higher profits in the English auction. Hence, the loss due

to the inefficiency of the second-price sealed-bid auction is fully borne by the bidders.

In section 4 we describe the experimental results and compare them to the theoretical

predictions. In section 4.1 we compare the bids in the first stage of the English auction

with the bids in the second-price sealed-bid auction (since these bids are based on the

same information, i.e., on initial beliefs about competitors’ signals). The experimental

results agree very well with the theoretical predictions. In particular, we find that agents

with higher signals bid more (note that this monotonicity is crucial for correct inferences

during the second stage of the English auction). In section 4.2 we describe how the

5



experimental second-stage bids in the English auction depend on the bidders’ own signals

and on the bid of the first dropper. The left bidder’s behaviour and the comparative

sensitivities among left and right bidders are as predicted by theory. But right bidders

(who have a quite complex, indirect inference problem) are not as sensitive to their own

and to the first dropper’s signal as in equilibrium. Such a deviation from equilibrium

behaviour, however, has no substantial influence on efficiency and payoffs. In section

4.4 we compare the efficiency attained in the experiment by the two types of auctions.

For ‘simple’ realisations of signals, where the bidder with the highest signal has also

the highest value, both auction types achieve similar, high, measures of efficiency. In

contrast, for ‘hard’ realisations of signals, where the above property does not hold, the

English auction achieves significantly higher measures of efficiency. These findings agree

well with the theoretical predictions. They are also consistent with the right bidder’s

deviation from equilibrium behaviour. In section 4.5 we describe the experimental results

concerning expected revenues for the seller. While the experimental seller’s revenues are

higher than the theoretically predicted ones (which can be attributed to a small amount

of over-bidding), we find that there is no significant difference among the two types of

auctions. Again, this last finding agrees very well with the theoretical prediction. Finally,

in section 4.6 we look at the bidders’ expected profits in the experiment, and we find, as

predicted by theory, that bidders are significantly better-off in the English auction.

Several concluding comments are gathered in section 5.

2 The experimental setup

The setup is as follows:

Three bidders, i = 1, 2, 3, bid for one unit of an indivisible object. Each bidder receives

a private signal si. From the point of view of bidder i , bidder (i + 1) modulo three is

the bidder to the ‘right’ of i, and bidder (i − 1) modulo three is the bidder to the left of
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bidder i. Information about other bidders is revealed during the experiment only with

respect to these relative positions, i.e. participants are informed about the bids or profit

of their left or right neighbour in the auction. The do not get to know which person in

the room this left or right neighbour is.

If bidder i successfully bids for the object and pays a price p then her payoff is given

by si +α · si+1− p where si is bidder i’s private signal, si+1 is the right neighbour’s signal,

and the weight α is a parameter that is varied during the experiment (see appendix A).

The signal si is a uniformly distributed integer from [0, 100], independent of si+1 and si−1.

Note that α = 0 yields the independent private values case.

We compare two auction formats: An English auction and a second-price sealed-bid

auction.

In the English auction we use an ascending clock design (see Kagel, Harstad, and

Levin 1987, p. 1280). There are three clocks on each computer screen, one for each

bidder. Clocks simultaneously start at a bid of −105 and synchronously move upwards

every 2 seconds in equal steps ranging from 2 to 5 units of currency. Each bidder may

stop her clock at any time by pushing a button. If a bidder stops her clock, then, at the

next price increase, the other bidders observe that the respective clock has been stopped.

When a unique clock is left active, the remaining bidder obtains the object at the price

shown by the clock of the agent that stopped last. After each auction, the position of

the winner, all signals, bids, and profits are communicated to the subjects. Information

about past auctions within the same round is also visible on the screen.

To match the design of the English auction, we decided to have an ascending clock6

design for the second-price sealed-bid auction as well: Clocks start at the same price and

increase bids at the same speed until they are stopped by their owner. Bidders see only

5We started with a negative bid to give bidders some ‘wake up time’ at the beginning of each auction.
6Within a multi-unit context Kagel and Levin (2001, p. 451) find experimental bids in an ascending

clock second-price sealed-bid auction to be “essentially the same” as those in a traditional second-price

sealed-bid auction.
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their own clock and whether it is stopped or not — individual bids are ‘sealed’. The

auction ends when two clocks are stopped. The remaining bidder obtains the item at

the price shown by the clock of the agent that stopped last, and the winner’s identity,

all signals, bids, and profits are communicated to the subjects. Information about past

auctions within the same round is also visible on the screen.

We conducted 6 different experiments. In each experiment we had about 15 partici-

pants. These participants were randomly divided into groups of three to play rounds of

8 to 10 auctions. Within rounds, the parameters (the α and the auction format) were

constant and known to participants. After each round, participants were again randomly

divided into new groups. Changes in the parameters where announced publicly to the

participants7. The first two rounds of each experiment were practice rounds that did not

count for subjects’ payoffs, and were not used for the analysis of the data. During the

following eight rounds subjects were payed according to their success.

3 Equilibrium predictions

In this section we compute symmetric equilibria for both auction formats. For simplicity

of notation, we assume that signals are distributed uniformly between 0 and 1, and not,

as in the experiment, between 0 and 100.

3.1 English auction

3.1.1 Bids in the English auction

In the English auction with 3 bidders we distinguish 2 stages: a first stage where all

bidders are still active in the auction, and a second stage where only two bidders are

left. The bidding strategy during the first stage may only depend on a bidder’s own

signal s. During the second stage, a bidding strategy may further depend on the price

7See appendix A for a list of the parameters.
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b̂0 where the first bidder dropped out, and on the first dropper’s position (i.e. whether

the bidder is to the left or to the right of the first dropper). Since only two bidders

are left, the second stage ends before bidders change their decision at what price to

drop out. Hence, the second stage is equivalent to a second-price sealed-bid auction.

In a symmetric equilibrium, strategies are described by a triple (b0(s), bL(s, b̂0), bR(s, b̂0))

where b0(·) describes the initial bidding function, provided that no other bidder has left

the auction. b̂0 is the price where the first bidder dropped out. bL(·) describes the second

stage bidding function of a bidder to the left of the first dropper. bR(·) describes the

second-stage bidding function of a bidder to the right of the first dropper. First, it is

straightforward to show the following that:

Proposition 1 For α > 1 the English auction has no pure symmetric equilibrium where

agents use strictly increasing bidding functions.

The proof is given in appendix B.1. When calculating the equilibrium bids for the English

auction in the following we will restrict ourselves to the case α ≤ 1.

Proposition 2 Consider the bidding strategy (b0(s), bL(s, b̂0), bR(s, b̂0)) defined by

b0(s) = s · (1 + α) , (1)

bL(s, b̂0) = sL +
α

1 + α
b̂0 , (2)

bR(sR, b̂0) =
1

1 − α
sR −

α2

1 − α2
b̂0 . (3)

Then in the English auction the strategy profile where each bidder bids according to

(b0(s), bL(s, b̂0), bR(s, b̂0)) is a Nash equilibrium. If α = 1 it is optimal for the right bidder

to always bid more than the left bidder.

Proof:
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Bids in the first stage The bid b0(·) determines a lower boundary for bL(·) and

bR(·). We first assume that this lower boundary is not binding, and then check that the

assumption is fulfilled in the computed strategies.

Assume that a bidder receives signal s and initially bids up to B, while the other

bidders (with signals sL and sR) bid according to b0(·), which is assumed to be strictly

monotonically increasing. Denote by b−1
0 the inverse of b0(·). Note that our bidder wins

the auction with the initial bid B if and only if sL = sR < b−1
0 (B). Her expected profit is

given by

U0(B) =
∫ b

−1

0
(B)

0
(s + α · sL − b0(sL)) dsL (4)

The first derivative is

∂U0

∂B
= (s + α · b−1

0 (B) − B)b−1
0

′

(b0(s)) (5)

which is zero for B = s · (1 + α). The second derivative ∂2U0/∂B2 is −1/(1 + α)2 < 0.

Hence we have found a maximum, and the candidate equilibrium bidding function is

b0(s) = s · (1 + α) (6)

The left bidder Given that b0(·) is strictly monotonically increasing, the first drop-

per’s signal s0 can be perfectly inferred from her bid b̂0. Hence, it is possible to write

strategies during the second stage as functions of own signals and the first dropper’s sig-

nal. After the first dropper has left the auction, the left bidder can infer her valuation

for the good which is sL + s0 · α. Since the second stage is equivalent to a second-price

sealed-bid auction, the left bidder, who now knows her valuation, has a dominant action:

remain in the auction till the price exceeds valuation. Hence, the candidate equilibrium

bidding function for the left bidder is

bL(sL, s0) = sL + s0 · α (7)
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With the help of equation 1, the equilibrium bidding function can be expressed as a

function of the own signal and the observed first bid:

bL = sL +
α

1 + α
b̂0 (8)

Note that ∀s0 < sL : bL(sL, s0) > b0(sL). Hence, for all possible signals, the candidate

equilibrium bid in the first stage does not restrict the second-stage bid of the left bidder.

The right bidder Let B be the bid of the right bidder, and let bL(sL, s0) be the

bidding function of the left bidder which is strictly monotonic increasing in sL. As long

as 0 < sL < 1 + αs0, the inverse with respect to sL exists and will be called b−1
L (sL, s0).

The right bidder will obtain the object as long as the signal sL of the left bidder is lower

than b−1
L (B, s0). The expected profit of the right bidder is

UR(B) =
∫ b

−1

L
(B,s0)

0
(sR + α · sL − bL(sL, s0)) dsL . (9)

Using equation 2 we calculate the derivative

∂UR

∂B
= sR − B · (1 − α) − s0 · α

2 . (10)

Since ∂2UR/∂B2 = α− 1, and by assumption α < 1, the second order condition is always

fulfilled8.

Solving the first order condition, ∂UR/∂B = 0, yields B = (sR − s0 · α
2)/(1 − α). We

should note that this expression may be larger than the highest equilibrium bid of the

left bidder 1 + αs0, in which case the inverse bidding function b−1
L (sL, s0) is not defined.

However, also in this case (sR − s0 · α2)/(1 − α) is still a best response.9 Hence, the

8See footnote 9 for the case α = 1
9To see that, we solve (sR − s0 · α

2)/(1−α) = 1 + αs0 to obtain the critical value s∗
R

= 1− (1− s0)α.

Whenever sR > s∗
R

the right bidder always obtains the object. In this case the profit of the right bidder

(sR + αsL − (sL + αs0)) is at least (sL − 1)(1 − α) which is always positive, hence it is optimal for the

right bidder to make such a high bid. (A bid of only 1 + αs0 would be sufficient, of course). With a

similar argument one finds that, for α = 1, the right bidder also always wants to obtain the object.
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candidate equilibrium bidding function for the right bidder is given by

bR(sR, s0) =
sR − s0 · α

2

1 − α
(11)

If α ≥ (1 − sR)/(1 − s0) the right bidder wants to obtain the object in any case. This

can be achieved by making the bid stated in equation 3, or by any other bid larger than

1 + αs0. With the help of equation 1, the equilibrium bidding function can be expressed

as a function of own signal and the observed first bid.

bR =
1

1 − α
sR −

α2

1 − α2
b̂0 (12)

If α ≥ (1−sR)/(1−(b0/(1+α))) the right bidder wants in equilibrium to obtain the object

in any case which can be achieved by bidding according to equation 12 or submitting any

other bid larger than 1 + αb0/(1 + α).

It is interesting to note that the right bidder’s bid bR(sR, s0) is decreasing in the first

dropper’s signal s0. The intuition is as follows: The higher the price reached in the first

stage, the lower the expected profit of the right bidder. Of relevance for the right bidder’s

profit is the left bidder’s signal. That bidder’s high bid may be motivated only by the

presumably high signal of the first dropper (which is relevant for the left bidder’s profit).

Note that ∀s0 < sL : bL(sL, s0) > b0(sL). Hence, for all possible signals, the candidate

equilibrium bid in the first stage does not restrict the second-stage bid of the left bidder.

One can easily check that the above determined strategies form an equilibrium,

no matter what the signals’ distribution functions are. In fact, the displayed profile

constitute an ex-post equilibrium10.

10An ex-post equilibrium is a strategy profile with the property that, for each vector signals, the joint

action specified by the strategies constitutes a Nash equilibrium even when the vector of signals is common

knowledge. An ex-post equilibrium, while not necessarily in dominant strategies, remains an equilibrium

for any specification of signals’ distributions.
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3.1.2 Efficiency, revenue and profits in the English auction

We can now formulate the following proposition:

Proposition 3 Assume that 0 ≤ α ≤ 1 . Then for any realisation of signals, the English

auction yields an efficient allocation.

The proof is given in appendix B.2.

Note that for weights α > 1 the efficient allocation rule is not monotonically increas-

ing in signals, i.e., increasing the signal of a certain bidder may cause the object to be

efficiently allocated to another bidder. As a consequence, the efficient allocation rule can-

not be implemented. There exists no mechanism such that, in equilibrium, the object is

always efficiently allocated.

In appendix B.3 we prove the following:

Proposition 4 The seller’s expected revenue in the English auction is

Re =
1

8
(4 + 3α) (13)

The ex-ante (i.e., before signals are revealed) sum of expected profit for the three bidders

is given by:

Ge =
2 + α2

8
(14)

3.2 The second-price sealed-bid auction

3.2.1 Bids in the second-price sealed-bid auction

In a second-price sealed-bid auction a bidding strategy can only depend on an agent’s

own signal. We consider symmetric equilibria. In appendix B.4 we prove the following:

Proposition 5 The symmetric equilibrium bidding function in the second-price sealed-bid

auction is given by

bS(s) = s ·
(

1 +
3

4
α
)

. (15)
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3.2.2 Efficiency, revenue and profits in the second-price sealed-bid auction

In contrast to the English auction, the allocation in the second-price sealed-bid auction is

not always efficient, even for α < 1. For illustration, consider an example where α = 1/2,

and where (s1, s2, s3) = (24, 0, 16). Valuations are give by (v1, v2, v3) = (24, 8, 28), and

the efficient allocation is to give the object to bidder 3. Indeed, in the equilibrium of the

English auction bidder 2 drops at a price of zero, bidder 1 drops at a price of 24, and

bidder 3 obtains the object (she would stay in the auction till a price of 36). In contrast,

in the second-price sealed-bid auction the ordering of equilibrium bids follows the ordering

of signals: (bS
1 , bS

2 , bS
3 ) = (33, 0, 22). Bidder 1 obtains the object, which is not efficient.

In appendix B.5 we prove the following proposition:

Proposition 6 The seller’s expected revenue in the second-price sealed-bid auction is

Rs =
1

8
(4 + 3α) (16)

The ex-ante (i.e., before signals are revealed) sum of expected profits for the three bidders

is given by:

Gs =
1

4
(17)

While the seller’s expected revenues are the same in the two bidding formats, the bidders’

expected profits differ. The efficiency loss occurring in the second-price sealed-bid auction

is fully borne by the bidders.

4 Experimental results

4.1 Initial bids

4.1.1 Raw data

In order to study the relation between initial bids and signals we show in figure 1 bids that

are normalised to compensate for different weights α: The left graph shows b̂0/(1+α) for
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Figure 1: Monotonicity of first bid

the English auction, and the right graph shows b̂S/(1+ 3
4
α) for the second-price sealed-bid

auction. Each dot represents one initial bid. Only auctions with α < 1 are shown. In

equilibrium the normalised bids must lie on the diagonal line. In the experiment bids

are scattered around the diagonal line and obviously increase with signals. In the English

auction other bidders can indeed infer from a high bid of the first dropper that this person

has a high signal.

We observe also some overbidding in both auction types when signals are low11.

11In experiments with private value situations (where the winner’s curse does not play a role) bids in

the English auction quickly convergence to the equilibrium prediction, while in the second-price sealed-

bid auction bids are higher than the equilibrium prediction(Kagel, Harstad, and Levin 1987, Kagel and

Levin 1993). This bias disappears only when subjects gain experience (Harstad 1990). Over-bidding by
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4.1.2 Estimating the bidding function

In the second-price sealed-bid auction we observe bids for the first two droppers. The

winning bid is only known to be higher than the two observed bids. In the English

auction we observe the initial bid b̂0 for a unique bidder (the first dropper). For the

remaining two bidders we only know that their unobserved initial bids b̂0,L and b̂0,R must

have been larger then b̂0.

To estimate bidding functions we therefore use censored-normal regressions (Tobin

1958, Amemiya 1973, Amemiya 1984). In the English auction one realisation of the

initial bid is known and the other two are right censored. In the second-price sealed-bid

auction, two realisations are known, and the remaining one is right-censored. Calling the

lowest bid b̂0 and the second-lowest bid b̂′′, bids enter the censored-normal regression as

shown in the following table:

first bidder second bidder winner

English auction b0 = b̂0 ≥ b̂0 ≥ b̂0

Second-price sealed-bid auction b0 = b̂0 = b̂′′ ≥ b̂′′

To compensate for the impact of different αs we estimate b0 = β(1 + α)s for the English

auction and b0 = β(1 + 3
4
α)s for the second-price sealed-bid auction.

When calculating levels of standard deviations and levels of significance we have to take

into account that observations within any of our six experiments may be correlated. We

can, however, assume that covariances of observations from different experiments are zero.

Covariances of observations from the same experiment are replaced by the appropriate

product of the residuals (Rogers 1993). We will use this approach throughout the paper

low signal bidders in English auctions with pure common values is reported in Kagel and Levin (1992).

In our experiment we find, on average, a significant amount of overbidding in all stages of the English

auction and some, but not significant overbidding in the second-price sealed-bid auction. For both auction

types the amount of overbidding does not change significantly with time. In section 4.4 we will relate

overbidding to efficiency.
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to calculate standard errors.

There is only a small and not significant amount of overbidding in the second-price

sealed-bid auction. We relate this finding to the fact that over-bidding in the second-price

sealed-bid auction has an immediate effect whereas overbidding in the first stage of the

English auction can most of the time be corrected in the second stage.

The following table shows the result of estimating a linear bidding function for all

values of α ≤ 1.

β robust σβ χ2(β = 1) P > χ2 95% conf. interval

English auction 1.173023 .0448517 14.88 0.0001 1.085115 1.260931

Second-price sealed-bid auction 1.011867 .0148595 0.64 0.4245 .9827429 1.040991

While in equilibrium β should be one for both auction formats, we find a significant

amount of overbidding for the English auction12.

4.2 Bids in the second stage of the English auction

Following the equilibrium bidding functions given in equations 2 and 12 we explain bids

in the second stage as a linear function of the first bid, the second dropper’s own signal,

and a constant.

We will first estimate a simple bidding function, assuming that all bidders use the same

function. They may systematically deviate from the equilibrium bidding function, but for

different αs they deviate in the same way. This estimate qualitatively confirms the above

equilibrium predictions for the left bidder, but not for the right bidder. To investigate

whether all or only a few right bidders deviate we allow in a second step for different

bidding functions for different bidders. To verify that the normalisations regarding α that

we had to make in the first and second step were appropriate we allow in a third step for

different deviations from equilibrium bids for different αs.

12We test for β = 1. The result of the appropriate χ2 test is shown in the table.

17



As in the estimation of the initial bid, we do not observe all realisations of the depen-

dent variable. Hence, we again use the censored-normal regression approach. Calling the

lowest bid b̂0 and the second-lowest bid b̂′′, bids enter the censored-normal regression as

shown in the following table:

first bidder second bidder winner

left of 1st right of 1st left of 1st right of 1st

bL ≥ b̂0 = b̂′′ ≥ b̂0 ≥ b̂′′ ≥ b̂0

bR ≥ b̂0 ≥ b̂0 = b̂′′ ≥ b̂0 ≥ b̂′′

We normalise coefficients to disentangle the influence of α from the other effects and

estimate bidding functions for rounds with α < 113

bL = βL
1 sL + βL

2

α

1 + α
b0 + 100 · (1 + α)βL

0 (18)

bR = βR
1

1

1 − α
sR + βR

2

−α2

1 − α2
b0 + 100 · (1 + α)βR

0 (19)

The normalisation of the coefficients that describe the linear influence of own signal

and of the first dropper’s bid follows the equilibrium prediction (see equations 2 and 12)

such that in equilibrium the coefficients are β1 = β2 = 1. Normalising the constant part

of the estimation cannot be based on the equilibrium bidding strategies, since these do

not include a constant. As we will see in figure 3 below, a constant that increases with α

can explain a substantial part of the actual bidding behaviour. Hence, we normalise the

constant to be 100 · (1 + α), which is the maximal valuation of an object.

In a first step we estimate14 equation 18 for all observations with α < 1.

13When estimating bR we use only observations where α ≤ (1− sR)/(1− (b0/(1 + α)) since only there

we have a point equilibrium prediction (see the discussion of equation 12 above). However, including

observations with α > (1 − sR)/(1 − (b0/(1 + α)) yields very similar results.
14Again we use a censored regression as described above and adjust standard errors for correlations

within experiments, see section 4.1.2.
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n = 4314 β robust σ z P > |z| 95% conf. interval

βL
1 .663243 .028028 23.66 0.000 .6083091 .7181769

βL
2 1.070481 .0588699 18.18 0.000 .955098 1.185864

βL
1 .1572744 .010776 14.59 0.000 .1361539 .1783949

As it should be, the coefficient βL
2 is not significantly different from one (χ2(1) = 1.43),

but βL
1 is significantly smaller than one (χ2(1) = 144.36). Doing the same exercise for

equation 19 and all observations with α < min{1, (1 − sR)/(1 − b0/(1 + α))} shows that

the right bidder deviates much more from equilibrium.

n = 4176 β robust σ z P > |z| 95% conf. interval

βR
1 .1833808 .0366421 5.00 0.000 .1115636 .2551981

βR
2 .1475404 .0374883 3.94 0.000 .0740647 .2210161

βR
1 .6122541 .0322076 19.01 0.000 .5491284 .6753798

Both βL
1 and βL

2 are significantly smaller than one (χ2(1) = 496.68 and χ2(1) = 517.08 re-

spectively). Comparing coefficients from the two estimations shows that βR
1 is significantly

smaller than βL
1 (χ2(1) = 95.32) and βR

2 is significantly smaller than βL
2 (χ2(1) = 278.55).

To investigate whether all participants deviate from equilibrium in the same way when

they are in the position of the right bidder or whether only some participants make huge

mistakes in this situation while other are still close to equilibrium we have to estimate

equations 18 and 19 for each individual separately. The result is shown in figure 2. The

figure confirms that most left bidders (shown as ‘◦’ in the graphs) are indeed relatively

close to the equilibrium behaviour (point ‘A’ in both graphs). Left bidders are a little

less sensitive to their own signal, which is compensated by an increased sensitivity to the

first dropper’s signal and a small constant part. Most of the right bidders (shown as ‘+’),

however, are far away from the equilibrium prediction. They are closer to point ‘B’ in the

graph, i.e. they do not react much to the signal of the first dropper and also react much

too little to their own signal. This is compensated by a substantial constant part of the
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The figure shows normalised estimations of the individual censored bidding functions from equation 18 for all auctions with α < 1, and

for equation 19 for all auctions with α < min{1, (1 − sR)/(1 − b0/(1 + α))}. Outliers have been eliminated from the graph using Hadi’s

method (Hadi 1992, Hadi 1994).

In equilibrium we have both for the left (◦) and for the right (+) bidder that β1 = 1, β2 = 1, and β0 = 0 (point ‘A’ in both graphs). The

case of a naive right bidder (see section 4.3) is located at point ‘B’.

Figure 2: Individual estimates for normalised bidding functions of the second stage
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bidding function.15 But right bidders are not completely insensitive to their own signal.

Figure 3 shows estimates of sensitivities to signals and to bids following equations 20

and 21.

bL = β1sL + β2b0 + β0 (20)

bR = β1sR + β2b0 + β0 (21)

The figure qualitatively confirms the above findings. Right bidders are indeed more sen-

sitive to their own signal than left bidders. For both, however, sensitivity to their own

signal (β1) is smaller than in equilibrium. Right bidders are also, as predicted, less sen-

sitive to the first dropper’s bid than left bidders, however, in equilibrium sensitivity to

the first dropper’s bid (β2) should be even smaller. Further, the normalisation of the

constant term that we have chosen in the estimation of equations 18 and 19 seems to be

justified. The estimates for β0 are increasing in α and almost parallel to the dotted lines

(β0 · (1 + α)) which describe the normalisation chosen for β0 in equations 18 and 19.

4.3 A second reference case: The naive right bidder

Given that the right bidder in the English auction strongly deviates from the equilibrium

recommendation, we consider, in addition to the equilibrium, a second reference case:

The first dropper and the bidder left to the first dropper follow their equilibrium bidding

functions. The bidder right to the first dropper, however, bids according to

b̃R = (1 + α) . (22)

This bidding strategy corresponds to point ‘B’ in figure 2. We will call this second

reference case the ‘case of a naive right bidder’. Notice that, given a naive right bidder

15Kagel, Levin, and Richard (1996) report experimental results about information processing in English

pure common value auctions. They find that the signal of the first dropper is correctly inferred, but that

bidders follow a simple strategy where bids are based on an average of own signal and the first dropper’s

signal
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The figure shows estimates of coefficients for the bidding functions 20 and 21. The estimation was done using a censored normal regression

approach for each α separately. The area of the symbols is proportional to the number of observations. Smooth curves and lines show

values in equilibrium. Dotted lines in the right figure indicate the normalisation chosen for β0 in equations 18 and 19 (the lines correspond

to β0 = 0.1, β0 = 0.3, β0 = 0.5).

Figure 3: Estimates of absolute bidding functions in the second stage
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the equilibrium strategies in the first stage and of the left bidder are still best replies.

4.4 Efficiency

In this section we study the efficiency properties of the English auction and the second-

price sealed-bid auction. Even in the case of a naive right bidder the English auction is

more efficient than the equilibrium allocation for sufficiently large α.16

For the analysis of the experimental results we measure efficiency in two different ways.

The upper part of figure 4 shows the relative frequency of efficient allocations. On the left

we show the results for all auctions. As in equilibrium, efficiency is higher in the English

auction for α < 1.17 The middle and right part of figure 4 distinguish between ‘simple’

and ‘hard’ cases in an attempt to better understand where the additional efficiency in the

English auction is gained. We define ‘simple’ cases to be realisations of signals where the

bidder with the highest signal has also the highest valuation. ‘Hard’ cases are realisations

of signals where the bidder with the highest valuation is not the bidder with the highest

signal.

In ‘simple’ cases monotonicity of bids alone is sufficient for efficiency, and both auction

16It is straightforward to show that for α ≤ 1 the second-price sealed-bid auction with equilibrium

bids yields an efficient allocation in 1 − α/2 of all cases. The English auction yields always an efficient

allocation in equilibrium, and yields an efficient allocation in (1 + α)/2 of all cases with a naive right

bidder.
17We make a probit estimate of the linear model η = (βsds + βe(1 − ds))α + c where η = 1 if the

allocation is efficient and 0 otherwise, and where ds = 1 for the second-price sealed-bid auction case and

0 otherwise. In equilibrium we have βe = 0, βs = −1/2. Indeed the coefficient βe is significantly larger

than βs. (χ2(1) = 14.09, P>χ2 = 0.0002) The test is based on a robust estimation that takes into account

correlations of observations within experiments.

We can also test without using a linear approach. To do that we must concentrate on the case where

α = 0.5 since only this case has been analysed in all experiments both in the second-price sealed-bid

auction and the English auction. In all six experiments the performance was better under the English

auction. A one-sided binomial-test finds this to be significant (P = 0.015625).
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The area of the symbols is proportional to the number of observations. The figure shows that the higher efficiency of the English auction

is obtained primarily in ‘hard’ cases.

Figure 4: Empirical efficiency
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formats are theoretically efficient for α < 1. This seems to be supported by our data.18

In ‘hard’ cases the English auction theoretically achieves full efficiency (as long as α <

1) while the second-price sealed-bid auction is never efficient. While in our experiment the

English auction does not reach full efficiency, the relative frequency of efficient allocations

is considerably higher than in the second-price sealed-bid auction.19 To conclude, the

English auction is more efficient then the second-price sealed-bid auction in hard cases

(where it is supposed to be more efficient) and approximately as efficient as the second-

price sealed-bid auction in simple cases (where it is supposed to be equally efficient).

Figure 4 also shows that efficiency decreases in α, i.e., the more complex the situation

becomes, the harder it is for participants to find the efficient allocation. Moreover, both

auction formats yield more efficiency in simple cases than in hard cases. Measuring the

relative frequency of efficient allocations does not allow to distinguish between missing

the efficient allocation by a substantial amount or only slightly. A second approach is

shown in the lower part of figure 4. Let v1, v2, v3 be the valuations of the three players.

Let v∗ be the winner’s valuation, let vrand := (v1 +v2 +v3)/3 be the average value, and let

vmax := maxi vi be the maximal value. Then (v∗−vrand)/(vmax−vrand) measures the degree

of efficiency. Note that both measures are equal to 1 if allocations are always efficient

(e.g., for α < 1 in the equilibrium of the English auction). This measure of efficiency

confirms the results obtained above.

We found that the additional efficiency of the English auction is gained where it is

supposed to be gained, namely in what we call ‘hard’ cases. However, in theses cases the

18A comparison of the linear models as described in the previous footnote does not find the coefficients

to be significantly different (χ2(1) = 0.47, P>F = 0.49). The test is based on a robust estimation that

takes into account correlations of observations within experiments. Also, a binomial test run for α = 0.5

does not find a significant difference (P = 0.109)
19An F-test can be used to show that the average efficiency is significantly higher under the English

auction (F (1, 5) = 119.83, P>F = 0.0001). The test is based on a robust estimation that takes into

account correlations of observations within experiments. Also, a binomial test run for α = 0.5 does find

a significant difference (P = 0.015625)

25



English auction does not reach the full (equilibrium) efficiency. We relate this failure to

the behaviour of the right bidder. To do that, we calculate the amount of overbidding,

i.e. the difference between the actual highest bid in the English auction and the equilibrium

value of this bid.20 Averages for our six experiments are shown in figure 5. We find that

inefficient allocations are the result of substantial underbidding of the right bidder and

only moderate overbidding of the left bidder. As we see from figure 5, the mistake of the

right bidder is larger than the mistake of the left bidder, both in the case of efficient and

in the case of inefficient allocations. To confirm this finding we calculate mean squared

distances between actual bids and equilibrium bids. These distances are significantly

higher for the right bidder than for the left bidder21.

To summarise this section, we have found that the efficiency properties of the two

auction schemes are in line with equilibrium predictions. At first glance this may be

surprising since at least one of the bidders in the English auction, the right bidder, does

not seem to follow the equilibrium recommendation. However, even with an extremely

‘naive’ right bidder, the English auction still has superior efficiency properties (see footnote

16) as long as α > 1/2 . Having said that, the next step is to find out who bears the

efficiency loss in the second-price sealed-bid auction — the seller or the bidders.

4.5 The seller’s expected revenue

From equations 13 and 16 we know that the equilibrium expected seller’s revenue in the

English auction is the same as in the second-price sealed-bid auction, namely (4+3α)/822.

This property can also be found in our experimental data. The left part of figure 6

shows the seller’s expected revenues. These revenues are very similar for both types

of auctions. To confirm that, we estimate the following robust regression (allowing for

20In cases where the right bidder has an interval of equilibrium bids we take the smallest difference.
21In all six experiments the mean squared distance is higher for the right bidder. We should reject the

hypothesis that samples are drawn from the same distribution (P = 0.031250).
22In the case of the naive right bidder revenue is slightly higher, namely (5 + 2α)/8
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Figure 5: Overbidding in the second stage of the English auction
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The left part of the figure shows average revenue for English auction and second-price

sealed-bid auction. The straight line shows revenue in equilibrium (for α ≥ 1 only for the

second-price sealed-bid auction).

The right part of the figure shows total bidders’ profit (value minus price). The curved line shows the

equilibrium profit for the English auction, the straight line shows the equilibrium profit for the second-

price sealed-bid auction.

Figure 6: Empirical revenue and profit
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β robust σβ t P > t 95% conf. interval F1,5(β = 1) P > F

βe 1.045328 .0156778 66.675 0.000 1.005027 1.085629 8.36 0.0341

βs 1.063437 .0317638 33.480 0.000 .9817854 1.145088 3.99 0.1023

Robust regression estimate of equation 23. Following equations 13 and 16, we should expect

βe = 1 and βs = 1. Tests of these equalities are shown in the two rightmost columns. Tests

allow for correlations of observations within experiments.

Table 1: Estimation of seller’s revenue (equation 23)

correlated observations within experiments):

R = 100 ·







βe ·
1
8
(4 + 3α) English auction

βs ·
1
8
(4 + 3α) second-price sealed-bid auction

(23)

βe measures sensitivity to α in the English auction, βs measures sensitivity to α in the

second-price sealed-bid auction. All coefficients should be 1 in equilibrium. The results

of a robust regression (allowing for correlated observations within each of our six experi-

ments) shown in table 1 are in line with the equilibrium prediction. In particular we find

that βe and βs are not significantly different23.

4.6 The bidders’ expected profit

As we have seen above in equations 14 and 17 bidders should be better off in the equilib-

rium of the English auction (where they obtain (2+α2)/8) than in the equilibrium of the

second-price sealed-bid auction (where they only obtain 1/4). Even with naive bidding

expected profit (3α/8) is larger in the English auction than in the second-price sealed-bid

23An F-test shows that F (1, 5) = 0.52, P>F = 0.5033. Notice that the F-test is based on the robust

regression that takes into account correlations of observations within experiments.

A more conservative binomial test comes to a similar result. Estimates done for each experiment

separately find βe > βs in two cases and βe < βs in four cases. We can not reject the hypothesis that βe

and βs are drawn from the same distribution (P = 0.6875)
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β robust σβ t P > t 95% conf. interval β∗ F1,5(β = β∗) P > F

βE .4198302 .1266414 3.315 0.021 .0942882 .7453722 1 20.99 0.0059

βS -.1480403 .1507582 -0.982 0.371 -.5355767 .239496 0 0.96 0.3712

c .8728101 .0270843 32.226 0.000 .8031877 .9424325 1 22.05 0.0054

Robust regression estimate of equation 24. By equations 14 and 17 we should expect βE = 1,

βS = 0, and c = 1. Tests of equality of estimated coefficients β with equilibrium values

β∗ are shown in the three rightmost columns. Tests allow for correlations of observations

within experiments.

Table 2: Estimation of bidders’ expected profit (equation 24)

auction as long as α > 2/3. Naive bidding has only a relatively small cost which is for,

sufficiently large α, compensated by the efficiency gains of the English auction.

The superiority of the English auction also holds in the experiment: The right part of

figure 6 shows that, for each α, the bidders’ profit is higher in the English auction than

in the second-price sealed-bid auction.

To confirm that, we estimate the following robust regression (allowing for correlated

observations within experiments):

G = 100 ·







βE · 2+α2

8
+ c · 1

4
English auction

βS · 2+α2

8
+ c · 1

4
second-price sealed-bid auction

(24)

Results of the estimation are shown in table 2. By equations 14 and 17 we should expect

βE = 1, βS = 0, and c = 1. Indeed βS is significantly smaller than βE
24 — the bidders’

profit is higher under the English auction than under the second-price sealed-bid auction.

However, all coefficients are smaller than the equilibrium prediction. Again we attribute

24Testing βE = βS finds them significantly different (F (1, 5) = 7.08, P>F = 0.0448). The F-test is

based on the robust regression that takes into account correlations of observations within experiments.

A more conservative binomial test comes to a similar result. Estimates done for each experiment

separately find βE > βS in all six cases. We should reject the hypothesis that βE and βS are drawn from

the same distribution (P = 0.015625).
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this finding to some over-bidding that results in smaller profits for bidders25.

5 Conclusion

We have experimentally compared an English auction with a second-price sealed-bid auc-

tion in a setting where bidders’ valuations are asymmetric and interdependent. In our

setting, the logic governing equilibrium behaviour is relatively complex. Nevertheless, we

generally find that the experimental results are well aligned with theoretical predictions.

In the English auction, we find that participants do not always correctly use the informa-

tion revealed during the bidding process if the inference problem is too complex (i.e., for

the right bidders). Still, bidders’ information processing is sufficient in order to achieve

significantly more efficiency in the English auction. The additional efficiency of the En-

glish auction is obtained only in ‘hard’ cases, i.e. in cases where the English auction is

theoretically efficient while the second-price sealed-bid auction is not. In ‘simple’ cases

where monotonicity is sufficient for efficiency and where both auction types are theoreti-

cally efficient, we find that both auction types are equally efficient in the experiment, and

that the measures of efficiency are indeed quite high.

We also find that the seller’s expected revenue is close to the theoretically predicted

value and, as predicted by theory, this revenue is not affected by the type of the auction.

Finally, we find that bidders are better off in the English auction than in the second-

price sealed-bid auction. This finding agrees well with the theoretical observation that

the efficiency loss in the second-price sealed-bid auction is fully borne by the bidders.

25Note that 1− βE can be taken as a measure for the winner’s curse in the English auction while −βS

corresponds to this measure for the second-price sealed-bid auction. As we can see in table 2, bidders in

the English auction suffer from a larger winner’s curse which is, however, more than compensated by the

greater theoretical efficiency of the English auction.
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A List of experiments

Experiment
Number of

Participants

Number of

Auctions
α type Euro/Taler

1. 1 15 10 .5 English .05

2. 1 15 10 .5 sealed bid .05

3. 1 15 10 .5 English .05

4. 1 15 10 .9 English .05

5. 1 15 10 .9 sealed bid .05

6. 1 15 10 .9 English .05

7. 1 15 10 1.5 English .05

8. 2 12 8 .5 English .0375

9. 2 12 8 .5 sealed bid .0375

10. 2 12 8 .5 English .0375

11. 2 12 8 .8 English .0375

12. 2 12 8 .8 sealed bid .0375

13. 2 12 8 .8 English .0375

14. 2 12 8 1.2 English .0375

15. 2 12 8 1.2 sealed bid .0375

16. 2 12 8 1.2 English .0375

17. 2 12 8 .5 English .0375

18. 3 18 8 .5 English .0425

19. 3 18 8 .5 sealed bid .0425

20. 3 18 8 .5 English .0425

21. 3 18 8 .9 English .0425

continued on next page

35



Experiment
Number of

Participants

Number of

Auctions
α type Euro/Taler

22. 3 18 9 .9 sealed bid .0425

23. 3 18 8 .9 English .0425

24. 3 18 8 2 English .0425

25. 4 15 8 .5 English .0425

26. 4 15 8 .5 sealed bid .0425

27. 4 15 8 .5 English .0425

28. 4 15 8 .9 English .0425

29. 4 15 8 .9 sealed bid .0425

30. 4 15 8 .9 English .0425

31. 4 15 8 1.7 English .0425

32. 4 15 4 1.7 sealed bid .0425

33. 5 18 8 .5 English .0425

34. 5 18 8 .5 sealed bid .0425

35. 5 18 8 .5 English .0425

36. 5 18 8 .7 English .0425

37. 5 18 8 .7 sealed bid .0425

38. 5 18 8 .7 English .0425

39. 5 18 8 1 English .0425

40. 6 18 8 .5 English .0425

41. 6 18 8 .5 sealed bid .0425

42. 6 18 8 1.1 English .0425

43. 6 18 8 1.1 English .0425

44. 6 18 8 1.1 sealed bid .0425

continued on next page
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Experiment
Number of

Participants

Number of

Auctions
α type Euro/Taler

45. 6 18 8 .3 sealed bid .0425

46. 6 18 8 .3 English .0425

47. 6 18 8 .3 English .0425

48. 6 18 8 .5 English .0425

B Proofs

B.1 Proof of proposition 1

The proof follows by contradiction. Assume there were a symmetric and strictly increasing

equilibrium bidding function b0(s) for the first stage. Assume also that bidders 1 and 3

follow this function and bid b0(s1) and b0(s3), respectively. We now show that bidder 2

can always improve by deviating and not bidding b0(s2). To do that we first determine

bidder 2’s profit with a bid B. Denoting S := b−1
0 (B) we distinguish 3 cases:

If S < min(s1, s3) then bidder 2 obtains zero.

If s3 < min(S, s1), i.e. bidder 3 drops first, then it is a dominant strategy for 2 to

bid 2’s true valuation, s2 + αs3. Bidder 1, however, has a valuation of s1 + αs2, which is

always larger than s2 + αs3 and waits for bidder 2 to leave the auction. Therefore bidder

2’s profit is zero in this case.

If s1 < min(S, s3), i.e. bidder 1 drops first with b0(s1) = s1 · (1 + α), then bidder 3’s

dominant strategy is to bid the true valuation s3 +αs1 which is larger than b0(s1). Notice

that, in this case, given the bidding function of bidder 3, bidder 2’s value is increasing

in bidder 3’s bid. Hence, bidder 2 should either wait for bidder 3 or leave the auction

immediately. If bidder 2 waits her profit is s2 + αs3 − (s3 + αs1), which is positive in

expectation:

g =
∫ S

0

(∫ 1

s1

(s2 + αs3 − (s3 + αs1)) ds3

)

ds1
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=
1

6
S
(

3(α − 1) − 3Sα + S2(1 + α) − 3(S − 2)s2

)

(25)

The first derivative of g at S = s2 is positive:

dg

dS

∣
∣
∣
∣
∣
S=s2

=
1

2
(α − 1)(s2 − 1)2 (26)

Hence, bidder 2 can always increase her profit by bidding slightly more than b(s2). Thus,

bidding b(s2) can not be part of an equilibrium.

B.2 Proof of proposition 3

We first show that it is never efficient to allocate the good to the first dropper (who has

the lowest signal). It is sufficient to show that s0 +α ·sR ≤ sR +α ·sL. Rearranging yields

s0 ≤ (1 − α)sR + α · sL, which follows immediately from s0 ≤ min{sR, sL}.

We now show that when the right bidder bids more than the left then it is indeed

efficient to allocate the object to the right bidder, and vice versa. What we have to show

is the following:

sL + α · s0
︸ ︷︷ ︸

left bid

Q
sR − s0 · α

2

1 − α
︸ ︷︷ ︸

right bid

⇒ sL + α · s0
︸ ︷︷ ︸

left value

Q sR + sL · α
︸ ︷︷ ︸

right value

(27)

Multiplying the left inequality with 1 − α and adding αsL − α2 · s0 on both sides yields

the inequality on the right hand.

B.3 Proof of proposition 4

Assume without loss of generality that bidder 2 determines the price. This means that

either 1 or 3 have the lowest signal.

• If 1 has the lowest signal, then 2 determines the price only if 3 wins. Player 3 can

only win if 3’s signal is larger than the critical signal sc
3 which is defined by the
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condition bR(s2, s1) = bL(s3, s1). This yields

sc
3 =

s2 − α · s1

1 − α
(28)

However, if 1 has the lowest signal and sc
3 > 1 then 3 can never win. Hence, player

2 will not determine the price iff s2 > sc
2 where sc

2 is defined as follows:

sc
2 = 1 − α + α · s1 (29)

• If 3 has the lowest signal, then 1 will win if he has a signal higher than the critical

signal sc
1 which is defined through bL(s2, s3) = bR(s1, s3). Solving for sc

1 yields the

following:

sc
1 = (1 − α)s2 + α · s3 (30)

Then the seller’s expected revenue in the English auction is

Re = 3

(
∫ 1

0

∫ 1

s3

∫ 1

sc

1

bL(s2, s3) ds1 ds2 ds3 +

∫ 1

0

∫ sc

2

s1

∫ 1

sc

3

bR(s2, s1) ds3 ds2 ds1

)

=
1

8
(4 + 3α) (31)

Similarly, the ex-ante (i.e., before signals are revealed) sum of expected profits for the

three bidders is given by:

Ge = 3 ·

(
∫ 1

0

∫ 1

s3

∫ 1

sc

1

s1 + α · s2 − bL(s2, s3) ds1 ds2 ds3 +

∫ 1

0

∫ sc

2

s1

∫ 1

sc

3

s3 + α · s1 − bR(s2, s1) ds3 ds2 ds1

)

=
2 + α2

8
(32)
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B.4 Proof of proposition 5

Take one of the bidders, and assume that her two neighbours, L and R, bid according

to bS(·), which is strictly monotonically increasing and has inverse b−1
S (B). Assume that

our bidder bids B. Then she will obtain the object as long as max(sL, sR) < b−1
S (B).

The value of the object is always s + α · sR (where s is the own signal and sR the right

neighbour’s signal).

This bidder’s expected profit is given by

U(B) =
∫ b

−1

S
(B)

0

(∫ sR

0
(s + α · sR − bS(sR)) dsL+

+
∫ b−1

S
(B)

sR

(s + α · sR − bS(sL)) dsL

)

dsR (33)

The derivative with respect to B is

∂U

∂B
=

1

2
b−1
S (B)

(

3α · b−1
S (B) + 4(s − B)

) ∂b−1
S (B)

∂B
(34)

The first order condition ∂U/∂B = 0 yields B = s · (4 + 3α)/4. Hence, the equilibrium

candidate bidding function is

bS(s) = s ·
(

1 +
3

4
α
)

(35)

The second order condition is

∂2U

∂B2
= −

32s

(4 + 3α)2
< 0 (36)

which is always fulfilled.

It is straightforward to show that the above computed strategies form a symmetric

equilibrium for the assumed uniform distribution of signals.
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B.5 Proof of proposition 6

To calculate the seller’s expected revenue we assume without loss of generality that bidder

2 determines prices. Then either bidder 1 has the lowest signal and bidder 3 the highest

signal, or vice versa. The seller’s expected revenue is

Rs = 3
(∫ 1

0

∫ 1

s1

∫ 1

s2

b(s2) ds3 ds2 ds1 +
∫ 1

0

∫ 1

s3

∫ 1

s2

b(s2) ds1 ds2 ds3

)

=
1

8
(4 + 3α) (37)

Note that the seller expects the same revenue as in the English auction! Since the re-

spective allocation functions are not the same, the equality of expected revenues is not a

corollary of the revenue equivalence theorem, but rather a coincidence that occurs for the

specific parameters used here.

Similarly, the ex-ante sum of the three bidder’s expected profits is given by:

Gs = 3 ·
(∫ 1

0

∫ 1

s1

∫ 1

s2

s3 + α · s1 − bS(s2) ds3 ds2 ds1 +

∫ 1

0

∫ 1

s3

∫ 1

s2

s1 + α · s2 − bS(s2) ds1 ds2 ds3

)

=
1

4
(38)

C Remarks regarding the within subject design

In our experiment subjects are participating in several auctions where they see different

signals, competitors’ bids, αs, and different auction formats. When calculating standard

deviations and the subsequent tests above we allowed for correlations of observations

within experiments. We assumed, however, that such a correlation only affects the noise

term of our model, and does not yield biased estimates of our coefficients. In this section

we investigate this hypothesis further. As an example we take the bids in the second

stage of the English auction. We show that, if there are at all effects from one auction to
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the next or one round to the next, these effects are small. Similarly to the estimation of

equations 18 and 19 we estimate

bL = βL
1 sL +

(

βL
2

α

1 + α
+ δL

2

α′

1 + α′

)

· b0 + γL
1 s′L + γL

2 u′ +

+100 ·
(

(1 + α)(δL
s d′

s + r + βL
0 ) + (1 + α′)δL

0

)

(39)

bR =
(

βR
1

1

1 − α
+ δR

1

1

1 − α′

)

· sR +

(

βR
2

−α2

1 − α2
+ δR

2

−α′2

1 − α′2

)

b0 +

+γR
1 s′L + γR

2 u′ +

+100 ·
(

(1 + α)(δR
s d′

s + r + βR
0 ) + (1 + α′)δR

0

)

(40)

where s′L denotes the signal the bidder got in the previous auction, α′ denotes the

weight from the previous round of auctions, u′ is the profit the bidder obtained in the

previous auction (if at all), d′

s is one if the previous round was under the second-price

sealed-bid auction format and zero otherwise, and r is the index of the round.

We use a censored regression as described above and adjust standard errors for cor-

relations within experiments. Results are shown in table 3. Maintaining the assumption

of possibly correlated observations within experiments implies that we can not calculate

robust standard deviations for all coefficients. In the table these entries are marked with

dots. However, the only point of this exercise is to show that the influence from past

auctions or past rounds is sufficiently small.

As in the estimation of equations 18 and 19, only β1 and β2 should be one, all other

coefficients should be zero. Indeed, most of them are. β0 takes a similar value as in the

estimation of equations 18 and 19. A positive δ2 shows that subject only slowly adapt

to the current value of α when reacting to the first bid. The α′ from the previous round

plays still a role. All other factors seem to play an ambiguous or small role.

D Instructions

Welcome to a strategy experiment
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n = 2877 β robust σ z P > |z| 95% conf. interval

βL
1 .6059076 .0379019 15.99 0.000 .5316211 .680194

βL
2 1.029934 .0670605 15.36 0.000 .8984974 1.16137

δL
2 .2978833 .0749272 3.98 0.000 .1510287 .444738

γL
1 .0379351 . . . . .

γL
2 −.0429036 .0203235 −2.11 0.035 −.0827369 −.0030702

δL
s −.0040583 . . . . .

r −.00159 . . . . .

βL
0 .1524918 . . . . .

δL
0 −.0021043 . . . . .

n = 2751 β robust σ z P > |z| 95% conf. interval

βR
1 .1262103 . . . . .

δR
1 .0226251 . . . . .

βR
2 .0058564 .035857 0.16 0.870 −.064422 .0761348

δR
2 .0912468 . . . . .

γR
1 −.0361427 . . . . .

γR
2 .126368 .0522627 2.42 0.016 .0239351 .228801

δR
s .0401919 .022191 1.81 0.070 −.0033018 .0836855

r .0050345 . . . . .

βR
0 .5292542 .0572241 9.25 0.000 .417097 .6414114

δR
0 .0265782 . . . . .

Estimation of equation 39 and 40

Table 3: Impact from past auctions or past rounds
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This strategy experiment is financed by

the Deutsche Forschungsgemeinschaft. The

instructions are simple. If you take them

into account carefully, decide sensibly, and

also take into account the reasoning of the

other players, you will gain a serious amount

of money payed to you in cash at the end of

the game.

Your profit depends on your success. For

each “Taler” that you obtain in the exper-

iment you receive 0.05 Euro. We have al-

ready carried out similar experiments. From

the experience that we have gained there,

we expect that, depending on your strategy,

you will today obtain between 15 Euro and

35 Euro.

Please note that we do not want to pay

you less money than what you deserve. All

the money that we do not give to partic-

ipants, must be returned to the Deutsche

Forschungsgemeinschaft.

Rules of the game

Please note that we do not cheat during this

experiment. Everything that you read in

these instructions is true. This may sound

trivial, but, sometimes psychologists do ex-

periments where participants are deceived

about parts of the experiment. This is not

the case with economic experiments, like

this one. We will explain the rules of the

game and we will stick to them!

The game will be played in groups of 3

persons each. Allocation to groups will be

determined by a random process. During

the experiment groups will be reallocated

repeatedly, again using a random mecha-

nism.

Each group will play several auctions.

Each member of a group has two neigh-

bours, neighbour one and neighbour two.

Imagine that the members of a group are

sitting around a table.

Neighbour 2 Neighbour 1

Player

Neighbour one is always the right neigh-

bour. Neighbour two is, in turn, to the right

of neighbour one. Also neighbour one has

two neighbours. His or her right neighbour

is the person that is, for you, neighbour two.
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His or her left neighbour is you. Finally

also neighbour two has two neighbours. His

neighbour one is you. His neighbour two is

the person that is your right neighbour.

If this sounds complicated to you, please

recall that in a sense all members of a group

are sitting around a round table, and neigh-

bour one for each player is always the person

sitting to the right.

Auction 10

Your Signal is 37 . The Value of the object for you is 37 plus 0.5 times the signal of your right neighbour

Your Value Signal of

your right

neighbour

Value for your right neigh-

bour depending on the sig-

nal of your left neighbour

Signal of

your left

neighbour

Value for your left neigh-

bour depending on the sig-

nal of yourself

0 50 100 0 50 100

87 = 37 + 0.5 · 100 100 100 125 150 100 100 125 150

74.5 = 37 + 0.5 · 75 75 75 100 125 75 75 100 125

62 = 37 + 0.5 · 50 50 50 75 100 50 50 75 100

49.5 = 37 + 0.5 · 25 25 25 50 75 25 25 50 75

37 = 37 + 0.5 · 0 0 0 25 50 0 0 25 50

In each auction each person receives a

signal. This signal is a number drawn ran-

domly between 0 and 100. All numbers be-

tween 0 and 100 are equally likely. The

signal of a person in the current auction is

only known to the person itself. Signals are

shown at the top border of each individual

screen.

When all members of a group of 3 per-

sons have received their signal, an object

will be auctioned. The person that man-

ages to obtain the object receives a certain

amount of “Taler” on his or her account.

This amount is determined as the person’s

own signal plus 0.5 times the signal of the

person’s right neighbour. The signal of the

person’s left neighbour is of no influence on

the value.

To make this relationship more clear, the

screen (left part of the table) shows a table
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that represents the value of the object de-

pending on the signal of your right neigh-

bour. Since the same relation also holds for

your right neighbour we also show (middle

part of the table) how the value of the ob-

ject for your right neighbour depends on the

signal of his right neighbour (your left neigh-

bour). The right part of the table also shows

this relation for the value of the object for

your left neighbour. Notice that the mid-

dle part of the table and the right part of

the table are identical and do not change

during the course of the game. The left col-

umn, however, is different in each auction.

It changes always with your signal.

You always know your own signal. You

can deduce the signal of your right neigh-

bour from the behaviour of the other players

in the auction.

Middle part of the screen: Bids

Your Bid Right Neighbour Left Neighbour

54 54 22

In the middle of the screen, on the left

you see a button that shows your bid slowly

counting upwards like a clock. When you

push this button, you leave the auction.

When only one person remains in the auc-

tion, this person leaves automatically and

obtains the object at the price that is cur-

rently indicated, i.e. the price where the pre-

vious bidder left the auction.

The bids of your left and right neigh-

bour will be visible on the screen in some

rounds. As long as they have not yet left

the auction their bid is also counting up-

wards and shown on a red background. As

soon as they leave the auction their clock

stops and is shown on a blue background.

We will play some auctions, where you

will not receive this information. In this

case you see question marks in place of your

neighbours’ bids. Please note that in this

case also your neighbours do not receive any

information about your bids.
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Lower part of the screen: Past

Round 3 Your data (profit=8.16 Euro) Right neighbour Left neighbour

Auction. . . Signal Bid Profit Signal Bid Profit Signal Bid Profit

9 60 80 (-10) 20 20 (-10) 100 80 50

8 . . . . . . . . . . . . . . . . . . . . . . . . . . .

In the lower part of the screen we give

you an overview about the past auctions.

The first line in the table shows your to-

tal profit in Euro.

The following lines show for you as well

as for your neighbours the signal, bid and

the profit. The profit of the person that has

obtained the object is shown on red back-

ground. We show a (hypothetical) profit

also for the other persons. This is the (hy-

pothetical) amount that the person had ob-

tained if the person had not left the auction

until its end.

Let us consider auction 9 from the ex-

ample. Your signal is 60, the signal of your

right neighbour is 20. The value of the ob-

ject for you is, hence, 60 + 0.5 · 20 = 70.

The highest bid is 80. Were you to obtain

the object at this price your profit would be

70 − 80 = −10.

Let us now consider your left neighbour.

This person has signal 100. Your signal was

60. The value of the object for your left

neighbour is, hence, 100 + 0.5 · 60 = 130.

The price payed by your left neighbour was

80. His profit is 130 − 80 = 50. Since the

object is indeed obtained by your left neigh-

bour, the profit of 50 is shown on red back-

ground.

If you have questions, you have now the

opportunity to ask them. You can always

ask questions during the experiment.

We will first play some auctions to get

used to the game. Then we will make a lit-

tle break to give you the opportunity to ask

questions.
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