Auctions

The Coase theorem

 without transaction costs, all government allocations are equally efficient, since parties will bargain to correct any externality. 0

 with transaction costs, government may minimize inefficiency by allocating property initially to the party assigning it the greatest utility.

private valuation: Bidders know their own x_i

uncertainty about $x_{j \neq i}$.

Example: consumption goods that are well known, that are not retraded.

Model: the vector of valuations *x* follows some distribution $F(x) : {}_{\mathfrak{R}}^{N} \mapsto {}_{\mathfrak{R}}^{N}$

We will often assume the following:

- distribution is **independent**, $F_i(x_i|x_{j\neq i}) = F_i(x_i)$
- distribution is **identical** $F_i(x_i|x_{j\neq i}) = F(x_i|x_{j\neq i})$

example: uniform distribution over $[0, \omega]$, $F(x_i) = x_i/\omega$.

common valuation (informational externality): Bidder **does not know** the own valuation x_i , only knows a **signal** s_i

valuation x_i is a function of all signals $x_i = f(s_1, s_2, \dots, s_i, \dots)$.

- special case: $x_i = \frac{1}{n} \sum s_i$ all valuations are the same ex-post, expected valuations are not the same.
- other bidders $j \neq i$ have some information which is essential for bidder *i*.
- note: valuations are typically not independent

allocative externalities: valuation depends on who obtains a certain item.

multiunit auction: more than one good is sold

- homogeneous goods
- heterogeneous goods

multiunit demand: bidders have demand for more than one unit.

- complements (bidding for a knife and a fork)
- substitutes (decreasing marginal utility)

efficiency putting the licenses into the hands of those who value them the most (Vice President Al Gore)

4

competition (low prices on the end user market)

revenue

other goals

- Information aggregation
- Discovery of prices
- Fairness and transparency
- Administrative efficiency.

Auction formats for single-object auctions

- first-price sealed-bid auction
- second-price sealed-bid auction
- Dutch auction
- English auction (75% of all auctions, Cassidy)

Implementation of FCC auction

• 60 MHz 3G spectrum auctions in 2000

How can we possibly sell a frequency spectrum?

comparative hearing regulator decides, hardly objective, inefficient, low revenue

lottery with potential resale many will apply for the lottery, shifts the allocation problem to a different market (negotiating with lottery winners), but not necessarily more efficient

6

auction market

- Multiple item auction
- series of rounds
- in each round bidders make sealed bids for several licenses
- at the end of each round: standing high bid is posted
- bid-increment in next round (5%-10% to standing high bid)
- activity rule

FCC auctions in Europe

per capita revenue of 60 MHz 3G spectrum auctions in 2000 (ordered according to time of the auction):

						_	8
4	00	00	E/head	endog. market MHz	bstract	all bids visible	multi- round
country	2G	36	Ψ		Ø		
UK	4	5	650	$3 \times 10, 2 \times 15^{ee}$		V	m
Netherlands	5	5	170	$2 \times 15, 3 \times 10$			m
Germany	4	6	620	* $12 \times 5^{2-3}$	а		m
Italy	4	5	210	5×10 + 5^e	а		m
Austria	4	6	105	* $12 \times 5^{2-3}$	а		m
Switzerland	3	4	20	$4 \times 15 \text{MHz}$			m
Belgium	3	4	45	4 imes 15 MHz			m
Denmark	4	4	95	4 imes 15 MHz			4 th -price
Spain	beauty contest						
Norway	beauty contest						
Sweden	beauty contest						
Finland	beauty contest						
France	beauty contest						

- ^{ee}: one 15MHz license for a newcomer only
- $^{2-3}$: activity for 2-3 lots required

(from van Damme, EER, 2002)

 note: in the netherlands 5 licenses are sold to 5 incumbents: can an entryant expect to win?

9

Optimal bids in a second price auction

Proposition 1 In a second price auction it is a weakly dominant strategy to bid according to $\beta^{II}(x) = x$.

10

standard auction the person who bids the highest amount wins the object

independent and identical distribution of valuations

risk neutral bidders maximise only expected payoff

Proposition 2 ... Then any symmetric and increasing equilibrium of any standard auction, such that the expected payment of the a bidder with value zero is zero, yields the same expected revenue to the seller.

Note: ex-post revenue may differ (and often does)!

Proposition 3 The symmetric bidding stratety in the equilibrium of a first-price auction is

12

$$\beta^{\mathbf{I}}(x) = E[Y_1^{(n-1)} | Y_1^{(n-1)} < x]$$

where $Y_1^{(n-1)}$ is the max of n-1 independent draws of X_i .