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Abstract

We introduce and experimentally test an auction model that allows for outside options of bidders

as substitutes for the auctioned object under the private values assumption. Theoretically and in

the experiments, bidders respond to their individual outside options and to variations of common

knowledge about competitors’ outside options. Interestingly, private outside options induce concave

equilibrium bidding functions with uniformly distributed valuations. The bidding data does support

this property. As theoretically predicted, lower-valued outside options lead individuals to bid more

aggressively in the experiments.
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1 Introduction

During the last decade, auctions have increasingly attracted attention from academia and the wider public.

A major part of this increased interest is due to growing popularity of using auctions as market institutions

for C2C and B2C transactions, allocating public resources and procurement contracts. Cases in point are

worldwide spectrum auctions, online auction platforms such as eBay and Ricardo and virtual B2B market

places, e.g. Covisint for the automotive industry or Consip’s AiR for Italian public procurement offers.

Often outside options are available to bidders in addition to the object offered in the particular auc-

tion. For the purpose of illustration, suppose that individual A has the opportunity to buy a used watch

either from a friend at some price or to participate in an online auction where a similar watch is offered.

A’s decision on the amount to bid for the watch in the auction might depend on the value she derives

from seizing her outside option, i.e. from transacting with her friend.

To our knowledge, there is no literature on the effects of auction-exogenous outside options on behav-

ior of bidders with heterogenous valuations. With identical bidder valuations and private, independent

outside options, the model reduces to the standard symmetric independent private values model (SIPV),

see Holt (1980). In Weber (1983), Gale and Hausch (1994), and Reiß and Schöndube (2002), outside

options are endogenized by another, subsequently conducted auction as a mutually exclusive transac-

tion alternative since bidders have single-object demand. The laboratory study of the sequential auction

model in the latter paper suggests that alternative transaction opportunities are an important determinant

of bidding behavior (see Brosig and Reiß, 2003). In order to isolate outside option effects from other

strategic considerations arising with transaction alternatives such as entry decisions or Bayesian updat-

ing, we augment the SIPV model to allow for auction-exogenous public and private outside options and

implement it in the laboratory to assess its predictive power. According to the data generated in our

extensive laboratory experiment, the comparative static predictions of the augmented theory match ob-

served behavior and clearly provide evidence for the bidding decision’s dependence on available outside

options.

The plan of the paper is as follows: in section 2 we introduce outside options into the symmetric

independent private values auction model and derive equilibrium bidding strategies for the first-price and

second-price auctions, section 3 describes our experimental design and section 4 discusses the experi-

mental data.

2 The Symmetric Independent Private Values auction model with outside

options

There aren risk-neutral individuals who maximize expected utility. Each individual has a valuation for

an object that is for sale in an auction. Individuali’s valuation is denoted byvi. Individuals have unit-
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demand for that object. In addition, each individual has access to a transaction alternative that can be

substituted for the object in the auction. The value that an individual derives from executing her outside

option instead of receiving the object auctioned off is denoted byw.1 We distinguish between public and

private outside options. With public outside options, each individual derives the same benefit from the

outside option. This is common knowledge. In contrast, private outside options are individual-specific

and private information. In subsection 2.2 we introduce public outside options into the SIPV model and

solve for bidding strategies in the first-price and second-price auction, in subsection 2.3 we extend the

SIPV model to allow for private outside option, derive equilibrium bidding behavior in the first-price and

second-price auction, and describe the model’s efficiency properties.

2.1 Bidding without outside options

Suppose that individual valuationsvi of the object that is offered in an auction are private information

and independently and identically distributed according to cumulative density functionF (vi) where

vi ∈ [v¯ ,v̄]. We assume throughout auctions without reserve price to concentrate on bidder behavior.

Without outside options, the Bayes-Nash equilibrium bidding functions for the first- and second-price

auctions are well-known (e.g. Riley and Samuelson, 1981, and Vickrey, 1961): for the first-price auction

we haveb fp(v) = v − R vv
¯
Fn−1(x)dx/Fn−1(v) and for the second-price auctionbsp(v) = v.

2.2 Public outside options

This is the easy case. In addition to valuationvi that individuali places on the auctioned object, the

value that individuali derives from executing her public outside option instead of receiving the object

is the same for all individuals and equalswi = w ∀i = 1, .., n. In particular, we assumew ≤ v
¯
. This

ensures that every individual voluntarily participates in the auction. For any auction design for which

payoff equivalence applies, it is straightforward to derive equilibrium bidding functions by application

of the payoff equivalence theorem. We illustrate this for the case of the first-price sealed-bid auction.

From payment equivalence with the boundary condition that the lowest valuation typev
¯

which never

wins the auction in equilibrium always receives his outside optionw, we obtain (cf. Riley and Samuelson,

1981, eq. 8b) the expected equilibrium payment for a representative bidder with valuationv:

P (v) = vFn−1(v)−w−
Z v

v
¯

Fn−1(x)dx. (1)

For the first-price design with the modification that any bidder receivesw if he is unsuccessful in the

auction, the expected equilibrium payment is given by

P (v) = Fn−1(v) bfp-pb(v)− £1− Fn−1(v)
¤
w. (2)

1Valuations of transaction alternatives are net of transaction costs. If, for instance, an alternative object is offered at a posted

price, thenw represents the value of the outside option net of its price. If there are many alternatives, thenw corresponds to the

best alternative net of prices.
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Setting both expressions for the expected equilibrium payment, (1) and (2), equal to each other

and solving forbfp-pv(v) leads to the intuitive result that the equilibrium bid under the first-price design

with public outside option precisely matches that without public outside options reduced by the outside

option’s value:

bfp-pb(v,w) = bfp(v)−w

wherebfp(v) is the equilibrium bidding function in the first-price auction without outside options defined

in the preceding subsection.

In the second-price auction the weakly dominant bidding strategy is given by:2

bsp-pb(v,w) = v −w.

Since without outside options the above bidding functions always imply efficient allocations in equi-

librium, it is obvious that public outside options do not destroy this property.

2.3 Private outside options

Again, individuali’s valuation isvi and the value that she derives from executing her outside option iswi.

Valuation pairs(v, w) ∈ [v
¯
, v̄]× [w

¯
, w̄] are independently distributed across individuals according to the

probability density functionf(v, w) and are private information. The assumption of jointly distributed

valuations for a given individual allows for correlation betweenv andw: it might be sensible to assume

that a higherv implies a higherw and lowerv tend to occur together with lowerw. Again we assume

that the lowest valuation is not lower than the outside option, i.e.v
¯
≥ w̄ ensuring that each individual

submits a bid in the auction, otherwise there are some types who prefer the outside option to the object

auctioned off even if the auction price equals zero. Figure 1 illustrates the type space.

Next we derive and discuss equilibrium bidding strategies for the first-price auction. In subsection

2.3.3 we show that private outside options in the first-price bidding model with uniformly distributed

valuations yield concave bidding functions. In subsection 2.3.4 we derive equilibrium bidding functions

for the second-price auction and in 2.3.5 we describe the efficiency properties of the augmented model.

2.3.1 Equilibrium bidding: first-price auction

In order to derive the equilibrium bidding strategy in the first-price auction, we represent the bidding

model in a way that allows its solution with standard procedures. For this, consider the utility maximiza-

tion problem of the representative risk-neutral individuali that submits bidbi in the auction and faces

the outside optionwi:

max
bi

Pr(bi wins) · (vi − bi) + [1− Pr(bi wins)] ·wi

2The proof is identical to that for the equilibrium bidding strategy under the second-price auction with private outside

options, see below.
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Figure 1: Type space(v, w)

This program can be rearranged to

max
bi

Pr(bi wins) · (vi −wi − bi) +wi

Since the outside optionwi is known to the individual and a constant, the argmax of that problem is the

same as the one of the following problem where the new variablexi := vi −wi is introduced

max
bi

Pr(bi wins) · (xi − bi) (3)

We interpret thex ∈ [v
¯
−w̄, v̄−w

¯
] as an individual’s net valuation of the object that is offered in the

auction that takes into account the opportunity cost of winning the auction and foregoing the outside

option. The logic of the transformation of the original maximization problem into (3) is to suppose that

the representative individual executes her outside optionwi before bidding in the auction, then bids in

the auction, and, since she has unit-demand, in case she wins the auction "repays" her outside option in

addition to the price of the auctioned object.

By this simple transformation we have a standard bidding problem in net valuationsx. All there

remains to do is to identify the probability density function that governs the distribution process of net

valuations. Note that a number of (actually infinitely many) valuation pairs(v,w) leads to the identical

net valuation̄x. Figure 2 depicts some iso-net-valuation-curves in two different type spaces to illustrate

this. By definition, iso-net-valuation-curves are given inw-v-space sincev = x̄+w. Obviously "higher"

iso-net-valuation-curves are associated with higher net valuations. The probability density function of a

given net valuationx is obtained by "summing up" all densities over the corresponding iso-net-valuation

curve as follows

fX(x) =

min{w̄,v̄−x}Z
max{w

¯
,v
¯
−x}

f(x+w,w)dw.
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Given a well-definedfX(x) with support[v
¯
−w̄, v̄−w

¯
] and cumulative density functionFX(x), we can

invoke standard results to derive the equilibrium bidding function (e.g. Riley and Samuelson, 1981)

assuming that there is no reserve price in the auction:

bfp-pr(x) = x−
R x

v
¯
−w̄ Fn−1

X (y)dy

Fn−1
X (x)

.

By resubstitution, the equilibrium bidding function for our model is:

bfp-pr(v,w) = v −w−
R v−w

v
¯
−w̄ Fn−1

X (y)dy

Fn−1
X (v −w)

which is strictly increasing inv and strictly decreasing inw since∂b/∂x > 0 and∂x/∂v = −∂x/∂w =
1.

2.3.2 Example: v ∈ U [50, 100], w ∈ U [0, 50], n = 2

Suppose(v, w) ∈ [50, 100] × [0, 50] with f(v, w) = 1/2, 500 andn = 2. It follows for net valuations

thatx ∈ [0, 100]. The cumulative density function ofX ≡ V −W is given by

FX(x) =

 x2

5,000 if x ∈ [0, 50]
200x−x2−5,000

5,000 if x ∈ [50, 100].

As a result, the symmetric Bayes-Nash equilibrium bidding function is given by

bfp-pr(x) =

 2
3x if x ∈ [0, 50]
300x2−2x3−250,000
600x−3x2−15,000 if x ∈ [50, 100].

Please note that bids and slopes at the potential discontinuity atx = 50 coincide at "both sides". The

bidding function depending on(v,w) is simply obtained by resubstitution:

bfp-pr(v,w) =

 2
3(v −w) if (v −w) ∈ [0, 50]
300(v−w)2−2(v−w)3−250,000
600(v−w)−3(v−w)2−15,000 if (v −w) ∈ [50, 100].

Figure 3 displays a corridor of equilibrium bidding functionsbfp-pv(v, w) and the equilibrium bidding

function that ignores outside optionsbfp(v) = 25 + v/2.

2.3.3 Concavity of equilibrium bidding functions

The parameterization of the preceding example with uniformly valuations and outside options leads to

concave equilibrium bidding functions. The equilibrium bidding function in net valuationsx is shown

in figure 4. It is linear over interval[0, 50] and strictly concave over interval(50, 100]. Every bid-

ding functionbfp-pr(v, w) is strictly concave in valuationv over some range ifw < 50. The function

bfp-pr(v,w = 50) is linear inv. Indeed, any bidding functionbfp-pr(v,w) that is in the corridor of the
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preceding figure 3 for a given outside option valuew and valuationsv ∈ [0, 50], is nested in figure 4

where its image corresponds to the image of net valuations over the subdomain[50−w, 100−w]. It can

be seen from the figure that equilibrium bidding functions for givenw become "more concave" inv as

the value of the outside option decreases. For the largest outside option valuew = 50, it is linear. As the

outside option’s value decreases, the bidding function becomes strictly concave over a larger portion of

its domain. With the lowest outside option valuew = 0, the bidding function is strictly concave over its

full domain.

2.3.4 Equilibrium bidding: second-price auction

Any individual i prefers to win the auction if the value net of payment that she derives from receiving

the object in the auction is not lower than the value she derives from executing her outside option. Thus,

individual i prefers winning the second-price auction if

vi − b̂−i ≥ wi

where the left-hand side is the return that she receives if her bid exceeds the largest competing bidb̂−i.

Using the definition of net valuationsx := v −w, this can be rewritten to

xi ≥ b̂−i.

Since winneri’s payment for the auctioned object is always determined by the fiercest competitors’

bidding behavior (denoted bŷb−i), utility maximization reduces to the selection of a bid that always

wins the auction if the above inequality holds and never wins it if the inequality is violated. Clearly,

bidding exactly the net valuationxi is a weakly dominant strategy, the reasons are standard and detailed

below.

There are two alternatives to biddingxi: either bidding a larger or a smaller amount (overbidding or

undercutting, respectively). Consider both bidding alternatives:
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• Overbidding: if bidderi overbids, say he submitsxi + δ, then there are three possibilities: (a)

b̂−i > xi + δ > xi: both, overbidding and biddingxi, doesn’t win the auction leading to the same

outcome; (b) xi + δ > xi ≥ b̂−i: again, overbidding and biddingxi lead to the same return, this

time both strategies win the auction at the same price belowxi (or both generate a return of zero

if xi = b̂−i); (c) now considerxi + δ ≥ b̂−i > xi: here overbidding wins the object resulting in a

loss (̂b−i − xi) while biddingxi prevents this. It follows that overbidding either leads to the same

payoff (a and b) or to a lower payoff (c) than biddingxi.

• Undercutting: if bidderi submits a lower bid than his net valuation, sayxi − δ, then, again it can

be made the argument that payoffs are either same under both strategies or undercutting performs

worse. Undercutting precisely leads to lower payoffs ifxi > b̂−i > xi− δ: then the bidder doesn’t

win the auction though biddingxi would have allowed him winning it with a profit atb̂−i.

Since overbidding and undercutting either result in the same or lower payoffs than bidding the true

net valuationxi, the latter must be weakly dominant.

2.3.5 Efficiency with private outside options

We know that in the case without outside options and also in the case with public outside options, always

efficient allocations are implemented in equilibrium. Here we show that efficiency is also obtained with

private outside options. If there is the possibility of an inefficient allocation then there must be any

unsuccessful bidder who can engage in a trade with the successful bidder such that the successful bidder

is compensated for giving up the object he won in the auction for her outside option and the unsuccessful

bidder is better off with the object he didn’t win in the auction. Suppose that such a trade is feasible,

then the lowest amount the winner of the auction must receive in order to be compensated for resorting

to his outside option isp := vs − ws. The amount that the unsuccessful bidder gets if he receives the

auctioned object from the auction winner instead of executing his outside option isq := vu − wu. In

an inefficient allocation, the unsuccessful bidder’s gain must exceed his payment to the auction winner,

i.e. q > p. By the definition of net valuations this is equivalent toxu > xs which implies viab0(x) > 0

that bu > bs. This, of course, contradicts the assumption that the unsuccessful trader lost the auction.

Therefore, first-price and second-price auctions where outside options are taken care of appropriately

result in Pareto-efficient allocations since these award the auctioned object to the bidder with the largest

net valuation.

3 Experimental design and procedures

To test the theoretical implications of public and private outside options in the SIPV model, we devised

three treatments that were implemented in a between-subjects design. In the baseline treatment A we
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ran standard auction games without outside options under the independent private value assumption with

two bidders where the highest bid wins. Bids and valuations were denominated in experimental currency

units (ECU). Each experiment session had twelve auction rounds in the strangers-matching design. In

each auction round, we used the strategy method to elicit a subject’s continuous bidding function by

asking for bids that correspond to the six hypothetical valuations 50,60,70,80,90,100. Bids for inter-

mediate valuations were determined by linear interpolation between the discrete bids. The particular

bidding function that a subject specified by entering a set of bids was graphically displayed at all times.3

Subjects were free to adjust their set of entered bids and thereby their specified bid functions as often

as they wished. Bids had to be nonnegative and were entered via keyboard. Recently, the collection

of entire bidding schedules in each round of auction experiments gained popularity but the particular

implementation varies between studies. Selten andBuchta (1999) introduced the strategy method for

auction experiments. In their experiments, subjects could specify a piecewise linear bidding functions

with up to 10,000 segments either using a graphical input mode or via keyboard. Their implementation

suffered from the problem that subjects might have been drawing "interesting landscapes" since 46%

of observed bidding functions were nonmonotonic (p. 81). Pezanis-Christou and Sadrieh (2004) used

a simplified version of the Selten and Buchta (1999) implementation where subjects could specify two

piecewise segments to allow for a single kink in the bidding schedule. In their study, approximately 15%

of bidding functions are nonmonotonic in their asymmetric auction treatments and approximately 5% in

their symmetric auction treatments.4 In the experimental studies of Güth et al. (2002, 2003) the set of

possible valuations was restricted to eleven values. For each of the eleven valuations, subjects had to

enter a corresponding bid. Unfortunately, these two studies do not report the share of observed bidding

schedules that are nonmonotonic. A characteristic common to all implementations including ours is that

subjects were required to submit their bidding schedules before their valuations were drawn unlike in

earlier studies.

A distinctive feature of our design is that pairs of matched subjects participated in five unrelated

auctions after specification of their bidding schedules instead of one single auction. For each of these five

auctions and for each of the subjects, a valuation was independently drawn from a uniform distribution

with support [50,100] and rounded to two decimal places. In each of the five auctions, subjects’ bids

were determined according to their specified bidding functions and their valuations. In each auction, the

high bidder received the difference between valuation and bid. In our baseline treatment A, the other

bidder received nothing. Subjects were informed about their five valuations, their submitted bids, the

high bidder, the high-bid, and their income in all five auctions; they were also informed about their

income in this round which was the sum of the five auction incomes. No information about competitor’s

valuations, incomes, and losing bids was revealed. A list of experiments is given in table 1.

3Screenshots are provided in the appendix.
4The percentages are inferred from clearly visible bar charts, figures 3 and 5.
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Table 1: List of experiment sessions

Treatment Session
Number of

Subjects

Type of

outside option

Number of

matching groups
ECU/Euro

A 1 14 none 1 25

A 2 14 none 1 25

A 3 18 none 2 35

B 4 18 public 2 120

B 5 16 public 2 120

B 6 18 public 2 120

C 7 16 private 2 150

C 8 18 private 2 150

C 9 20 private 2 150

C 10 18 private 2 150

In treatment, B and C, the procedures of treatment A were modified to allow for an outside option

that was implemented as a fixed income for the low bidder. The values of the outside options were drawn

from a uniform distribution with support [0,50] for four auction rounds, rounded to two decimal places

and announced to each individual bidder before subjects specified their bidding functions. Treatments B

and C differed in the amount of information that subjects had about their competitors’ outside options.

In treatment B, the outside option was public in the sense that both bidders would have received the

same fixed income if they had happened to be the low bidder. In treatment C, outside options were pri-

vate information and it was common knowledge that outside options were independently and uniformly

distributed over the interval [0,50].

At the beginning of each experiment session, subjects took a brief treatment-specific computerized

quiz to ensure their familiarity with the instructions and the experiment they were about to participate

in. At the end of the last auction round, subjects went through a brief computerized questionnaire. Upon

completion, they received their earned income converted into Euros in cash. Subjects that participated in

treatment A received in addition a show-up fee of 3 Euro at the end of the experiment. The experiment

was programmed and conducted with the software z-Tree (Fischbacher, 1999).

Equilibrium predictions Table 2 presents the equilibrium bidding strategies derived from our aug-

mented auction model for our specific treatments (obviously treatment A is a special case of treatment B

without outside option).

In figure 5, the equilibrium bidding function for the baseline treatment,bA(v) is drawn as well as a

corridor of bidding functions for treatment C that is characterized by its lower boundbC(x = v − 50)
and its upper boundbC(x = v − 0); any bidding function for treatment B,bB(v, w) is a parallel line to

11



Table 2: Equilibrium bidding predictions

Treatment RNNE equilibrium prediction Bid range

A bA(v) = 25 + v
2 bA ∈ [50, 75]

B bB(v,w) = 25 + v
2 −w bB ∈ [0, 75]

C bC(x) =

 2
3x if x ∈ [0, 50]
100x2−2/3x3−250,000/3

200x−x2−5,000 if x ∈ [50, 100] bC ∈ [0, 50]
wherex ≡ v −w

bA(v) where the "vertical distance" is equal to the outside option’s valuew.
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Figure 5: Bidding predictions for Treatments A, B, and C

4 Experimental results

The plan of this section is to provide a brief description of the data that we obtained, to discuss the

monotonicity of observed bidding functions and then to discuss the effects of outside options and ef-

ficiency. In the remainder of this section, we investigate if observed bidding functions are concave in

treatment C as predicted.

4.1 Monotonicity of collected bidding functions

A key feature of our experimental design is that subjects specified an entire bidding function in each

auction round. Across all treatments and rounds, 2,040 bidding functions were specified by 170 subjects.

From all of these bidding functions, 1,804 are monotonic increasing in valuationv (88.4%), 44 are

12



constant (2.2%), five are decreasing (0.3%), and 186 are nonmonotonic with either peaks or troughs

(9.1%). Table 3 provides a breakdown by treatment.

Table 3: Monotonicity of observed bidding functions

Monotonicity of treatment A treatment B treatment C sum

bidding functions (no outs. opt.) (public outs. opt.) (private outs. opt.)

strictly decreasing 1 (0.1%) 1 (0.05%)

weakly decreasing 1 (0.1%) 4 (0.5%) 5 (0.25%)

constant 2 (0.4%) 19 (3.1%) 23 (2.7%) 44 (2.16%)

weakly increasing 378 (68.5%) 410 (65.7%) 543 (62.9%) 1,331 (65.25%)

strictly increasing 123 (22.3%) 139 (22.3%) 211 (24.4%) 473 (23.19%)

nonmonotonic 49 (8.9%) 55 (8.8%) 82 (10.0%) 186 (9.12%)

sum 552 624 864 2,040

In contrast to the experimental data reported in Selten and Buchta (1999) where 46% of the col-

lected bidding functions were nonmonotonic, the phenomenon of drawing interesting landscapes with

bidding functions seems not to be a problem with our design since only a minority of bidding functions

is nonmonotonic (9.1%) and allows for those landscapes.5

4.2 Raw bidding data

Before we begin our analysis of the effects of outside options on bidding behavior, it is worthwhile to

take a brief look at the bidding data that we obtained. In all treatments, individuals were asked to specify

a bidding function given their outside option in every round (in treatment A, the value of the outside

options equals zero). In order to represent the bidding functions that participants in our experiments have

submitted as stepwise linear functions, we will in the next few paragraphs concentrate on bids. For each

bidding function that was submitted we will randomly draw five valuations to represent pairs of bids and

valuations. We take the same five randomly drawn valuations that we also used in the experiment to

determine the payoff and to give feedback to participants.

4.2.1 Treatment A - no outside options

Figure 6 illustrates the bidding data that we obtained in the baseline treatment A where there was no

outside option available to any of the bidders. If bidders have no outside option then valuations of the

object that is offered in the auction coincide with net valuations, i.e.xi = vi sincewi = 0. The lower

line in the scatterplot indicates the RNNE-bidding prediction and the upper indicates the naive bidding

strategy "bid your valuation". Each dot represents one of the five bids that were calculated according

5Some observed bidding functions are provided in the appendix.
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to the submitted bidding function and for the five randomly drawn valuations in each round a single

bid that was submitted. Since 46 individuals participated in treatment A and 5 valuations were drawn

in each of 12 rounds, there are 2,760 data points.6 The dashed line is a median spline fitted to the bid

data. Indeed, we observe bids that are higher than the RNNE prediction, but only for large individual
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Figure 6: Bidding data for treatment A

valuations. For small individual valuations, bids appear smaller than the RNNE predicts. Why is this

so? One difference between the studies by Cox et al. (1982), Cox et al. (1988), Dorsey and Razzolini

(2003), Isaac and Walker (1985), Ockenfels and Selten (2002) and ours is that in their studies the lowest

valuation is zero or very close to zero. This is not the case in our experiment. We are aware of two other

studies where the lowest valuation is significantly larger than zero (Güth et. al. 2003; Chen and Plott

1998). In the first study, the authors report some underbidding with low valuations and overbidding with

high valuations, unfortunately statistical tests are not provided. In Chen and Plott (1998), individual-

wise estimated intercepts of linear bidding functions are reported to not significantly differ from the

RNNE/CRRA prediction for 86% of the subjects (p. 66). Unfortunately, this number includes 50% of

subjects that was faced with a lowest possible valuation equal to zero (the other 50% faced a lowest

possible valuation equaling 500.) Since negative bids were either excluded (not reported in the paper)

or very unlikely to be observed in that experiment (since the provided instructions are silent on this

possibility), it is not obvious that there was no underbidding observed. In order to address this issue, we

have conducted further experiments that significantly point to the fact that underbidding occurs if it is

not precluded by experimental design, see Kirchkamp and Reiß (2004).

6The figure depicts only 2,752 data points due to the scale choice for the vertical axis. In the first round, one subject specified

a bidding schedule comprising six data points where the lowest boundary equals 110.06 resulting in five invisible data points.

Also in the first round, another subject submitted the bids 115.07 and 120.49 for the valuations 93.38 and 96.99, respectively.

Another subject once bid 153.04 for valuation 99.72.
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4.2.2 Treatment B - public outside options

In treatment B, every individual faced an outside option that coincided with the outside option of his

competitor which was commonly known. The next figure illustrates how observed bids relate to the

theoretical bid prediction that underlies the corresponding (valuation, outside option)-pair. Since public

outside options vary and the RNNE bidding function doesn’t depend solely on net valuations, we trans-

form the bidding data by addingw/2 to each observed bid such that the data is readily comparable to the

transformed RNNE bidding functionbB(v,w) +w/2 (= 25+ x/2) that only depends on net valuations.

Since there are 52 individuals who participated in this treatment, figure 7 plots 3,120 data points.
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Figure 7: Bidding data for treatment B (all bids)

4.2.3 Treatment C - private outside options

Figure 8 illustrates data for treatment C where every bidder’s outside option was private information

such that the competitor’s outside option were unknown. The lower line in the figure corresponds to the

RNNE-equilibrium function, the upper line is 45-degree-line. Please note that the data points that lie

beyond the 45-degree line do not necessarily indicate that there was bidding-above valuation since the

horizontal axis gives net valuations, i.e. valuations minus the value of the outside option. Again, each

dot represents a single bid. Since 72 individuals participated in treatment C over 12 rounds, there are

4,320 data points. Although there is some underbidding, overbidding the RNNE-prediction seems to be

the predominant behavioral pattern in both figures. (However, the lowest boundary of net valuations is

zero.)

4.3 Effect of outside options on bidding

4.3.1 Public outside options

In each of the three experimental sessions for treatment B, subjects faced three different randomly drawn

values as their public outside options. Including treatment A withw = 0, we obtained bidding data
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Figure 8: Bidding data for treatment C (all bids)

for w ∈ {0.00, 10.51, 12.79, 14.59, 23.49, 25.82, 25.96, 37.28, 44.24, 46.07}. The following figure

clearly shows that observed bidding behavior is affected by the value of public outside options. In

the left panel, median splines for bidding data conditional on the outside option’s valuew are plotted.

Median splines for treatment B are constructed from 1,000, 1,040 and 1,080 data points, respectively. The

median spline for treatment A is constructed from 2,760 data points. As the value of the outside option

increases, e.g. from zero to levels between 10 and 15 ECU, median bids pronouncedly decrease. The

right hand panel illustrates the theoretical equilibrium predictions. The prediction for a given valuation

v corresponds to a range of bids since similar outside options are grouped in the same way as in the

left panel. In the figure, bid prediction ranges are indicated by the shaded areas. It is easy to see that

the qualitative comparative static effect found in the data is in line with the behavior of equilibrium

bidding functions. Intuitively, as the opportunity cost of bidding increases (=value of foregoing the

outside option), winning the auction becomes less important and thus leads to less aggressive bidding.

This implies that the quality of the equilibrium prediction for first-price bidding data that ignores outside

options deteriorates as public outside options gain importance.

From Figure 9 it appears that median splines are "steeper" than the corresponding equilibrium pre-

dictions. However, it is difficult to see if the predicted comparative static effects due changes inw are

quantitatively reproduced in the laboratory. In order to resolve both issues, we estimate linear bidding

functions for treatments A and B separately and pooled. Calculations of standard errors take into account

that observations might be correlated within matching groups but not across matching groups; Rogers,

1993). The regression results are summarized in table 4. The estimated coefficient of the public outside

option valuew suggests that it has a strong negative impact on bidding behavior. However, the negative

impact of public outside options on bidding data observed in the data,β̂w = −0.77, is significantly

weaker than theoretically predicted, βw = −1 (t5 = 9.1647, p = 0.000). The slopes of all equilibrium

bidding functions are equal to1/2. Though estimated slopes are positive, they significantly exceed 1/2

(t5 = 105.27, p = 0.000).
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Figure 9: Bidding behavioral effects of public outside options

The result that individuals do not fully expropriate their outside option by bidding too high is inter-

esting in light of the debate on the declining price anomaly (see Ashenfelter and Graddy, 2003, and the

references therein). If this expropriation failure arises with endogenous outside options, too, then one

might expect a series of falling prices as observed in the field.

4.3.2 Private outside options

In order to get a first impression if there is any effect of the private outside option on bidding behavior,

the bidding data is classified into five groups according to the value of the outside option. The five ranges

for outside options are (0,10), (10,20), (20,30), (30,40), and (40,50). In the left panel of figure 10, median

bids conditional on the outside option value range and over individuals and rounds are plotted for each of

the valuations in {50, 60, 70, 80, 90, 100} for which subjects keyed in their bids. Median bids are con-

structed from 152-204 entered bids, the precise number depends on the particular outside option range.

One pattern in the data deserves particular attention: bids tend to decrease in the value of the outside

option as in the case of public outside options. To compare the bidding data to the theoretical bench-

mark, the corresponding equilibrium predictions are provided in the right panel of the figure. Since we

consider median bids for small ranges of outside options, the theoretical benchmark is a range of bidding

functions. In the figure, the equilibrium bidding function for the expected value of the outside option
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Table 4: Regression results

Treatment expl. var. coeff.̂βx robustσβx t P > |t| 95% conf. interval

A constant 0.2770354 2.494552 0.11 0.919 -7.661742 8.215813

v 0.8626416 0.0248474 34.72 0.000 0.783566 0.9417172

B constant 1.8715710 1.1418200 1.64 0.162 -1.06357 4.806713

v 0.7964621 0.0123155 64.67 0.000 0.7648041 0.82812

w -0.7668116 0.0254442 -30.14 0.000 -0.8322181 -0.7014051

A+B constant 2.3330420 1.532425 1.52 0.162 -1.133545 5.7996280

v 0.8275259 0.0179942 45.99 0.000 0.7868202 0.8682317

w -0.8527819 0.0253570 -33.63 0.000 -0.9101434 -0.7945203

conditional on the particular outside option range is drawn as a patterned line. It is embedded in an area

of equal shading that contains all equilibrium bidding functions given the particular outside option range.

By construction, every shaded area represents a different theoretical benchmark that corresponds to the

observed median bids. It can be seen that the strong outside option pattern in the data is qualitatively

predicted by theory. Median bidding functions appear to lie above their theoretical counterparts.

Table 5 reports the results from a linear regression that explains observed bids with the equilibrium

bidding prediction and the value of outside options.7 If subjects were to bid according to the theoretical

benchmark, the coefficient of the equilibrium prediction would equal unity. For treatment C,β̂bC(xi)

significantly exceeds unity (t = 5.446, p = 0.001, two-tailed). From this it cannot be directly concluded

that there is overbidding on average since other coefficients are significant, too. In particular, the estimate

for the constant is negative as is the coefficient on the interaction term. However, it is straightforward to

show that there is no valuation pair(v, wi) ∈ [50, 100] × [0, 50] that leads to a bid predicted from the

estimated regression model lower than the corresponding theoretical equilibrium prediction.8

Theory also predicts that only net valuations, i.e. the difference between object valuation and outside

option value, matter for bidding and not their individual levels. If subjects were to bid according to this

7Again, we account for the fact that observations are independent between but not within matching groups.
8The bidding prediction from the estimated model isb̂C = −12.99646 + 1.610504bC(xi) + 0.3347499wi −

0.0085359bC(xi)wi. There is global overbidding if for allxi ≡ vi−wi the inequalitŷbC ≥ bC(xi) is not violated, equivalently

0.610504bC(xi) + 0.3347499wi − 0.0085359bC(xi)wi ≥ 12.99646.

SincebC(xi) is monotonic increasing, the lowest bid forxi ≥ 50 is bC(50) = 100/3. Using this value with the above inequality

leads to7.3537 + 0.05022wi ≥ 0.This holds due to nonnegative outside options. It remains to check the above inequality for

xi < 50. Substitution ofbC(xi < 50) = 2/3(vi − wi) yields

vi ≥ 12.99646 + 0.072 25wi − 0.0056906w2i
0.407− 0.0056906wi

.

The maximum of the RHS is 42.633 (atwi = 27.665) while the lowest valuationvi is 50. Thus, the inequality is never violated

confirming global overbidding.
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Figure 10: Bidding behavioral effects of private outside options

prediction, then the coefficient of the outside option would equal zero. The estimation results show that

the coefficient of the private outside option’s value,β̂wi , significantly exceeds zero.

Table 5: Regression results: Deviations from Nash bids

Treatment expl. var. coeff.̂βx robustσβx t P > |t| 95% conf. interval

C constant -12.99646 4.655477 -2.79 0.027 -24.00491 -1.988004

bC(xi) 1.610504 0.1120983 14.37 0.000 1.34544 1.875567

wi 0.3347499 0.110117 3.04 0.019 0.0743646 0.5951352

bC(xi) ·wi -0.0085359 0.0022247 -3.84 0.006 -0.0137965 -0.0032753

4.3.3 Effects of outside option type

We have reported that both types of outside options, private and public, decisively affect bidding behavior

of subjects. The difference between the two types lies in their associated common knowledge sets. With

public outside options, each subject knows that any competing bidder is faced with the same outside

option value. Whereas under the private outside option regime, each subject is uncertain about it and

only knows the underlying distribution. Here, we investigate if the particular type of outside options
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affects observed bidding behavior. For this we estimate the regression model9

bj = βoB ·B + β1B ·B · vj + β2B ·B · wj

+βoC ·C + β1C ·C · vj + β2C ·C · wj + εj

whereB andC are treatment-specific dummy variables with pooled data from treatments B and C. The

specification follows from equilibrium bidding in treatment B. The results are reported in table 6. Under

the hypothesis that the type of outside options does not influence bidding behavior, the estimated coeffi-

cients for treatment B should be no different from the estimates for treatment C. Testing the hypothesis

Table 6: Regression results: Effects of outside option types

Treatment expl. var. coeff.̂βx robustσ̂βx t P > |t| 95% conf. interval

B+C B 1.871571 1.081695 1.73 0.107 -0.4652893 4.208432

B · vj 0.7964621 0.011667 68.27 0.000 0.7712571 0.8216671

B ·wj -0.7668116 0.0241044 -31.81 0.000 -0.8188861 -0.7147372

C -0.9549387 2.989683 -0.32 0.754 -7.413756 5.503879

C · vj 0.7820828 0.0374816 20.87 0.000 0.7011088 0.8630568

C ·wj -0.6941989 0.023007 -30.17 0.000 -0.7439024 -0.6444953

that all estimated coefficients for treatment B coincide with their counterparts for treatment C can be

significantly rejected (F3,13 = 4.70, p = 0.0196 ). Pairwise comparisons of the estimates indicate that

only the coefficients of the outside options significantly differ from one another (t = 2.179, p = 0.0483,

two-tailed). It appears that the subtle difference in common knowledge stemming from different types

of outside options affects bidding behavior. In particular, more valuable outside options lead to stronger

relaxations of aggressive bidding under public outside options than under private outside options as the-

oretically expected.10 Therefore, the details of common knowledge may matter more than suggested

elsewhere.11

4.4 Efficiency and outside options

In this section, we investigate if outside options influence the efficiency generated by first-price sealed-

bid auctions. An allocation is Pareto-efficient if the bidder with the highest net valuation,x ≡ v − w,

is awarded the object in the auction and the loser seizes the outside option (in the baseline treatment,

the value of the outside option equals zero such thatv = w). One measure of efficiency is the relative

9Again, we take into account that observations are independent between but not within matching groups.
10Notice that∂bB/∂w = −1 and∂bC/∂wi ≤ −2/3.
11Güth and Ivanova-Stenzel (2003) report that the manipulation of common knowledge in asymmetric private value auctions

(competitor’s valuation distribution is know/unknown) "changes behavior only slightly and hardly ever in significant ways." (p.

198f.)
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frequency of Pareto-efficient allocations. As table 7 suggests, there do not seem to be large differences

between the treatments, though the numbers for treatment B are somewhat lower and relative frequencies

for the first six rounds are slightly greater such that efficiency may slightly increase over time.

Table 7: Relative frequencies of Pareto efficient allocations

Treatment rounds 1-6 rounds 7-12 rounds 1-12

A no outside options 82.5% 86.4% 84.4%

B public outside options 78.5% 83.2% 80.9%

C private outside options 82.4% 85.5% 83.9%

To test for treatment differences and time effects, letEi,r denote the relative frequency of Pareto-

efficient allocations with the participation of subjecti in roundr. Let A, B, andC be treatment dum-

mies andLA, LB, andLC be treatment-specific dummies that indicate if the observation was gener-

ated in rounds 1-6 (L=0) or in rounds 7-12 (L=1). The estimation results for the regression model

E = β0A+β1B+β2C+β3LA+β4LB+β5LC are summarized in table 8.12 In all treatments, alloca-

tions significantly tend to be more often Pareto-efficient if realized in the second half of the experiments

(p < 0.075, two-tailedt-tests). However, pairwise tests for differences between coefficient estimates for

the treatment dummiesA,B, andC reveal no significant differences between treatments A and C and B

and C (p > 0.124, two-tailedt-tests) in the level of efficiency; however, there is a significant difference

between treatments A and B (p = 0.0989, two-tailedt-test).

Table 8: Regression results: Efficiency by treatment

expl. var. coeff.̂βx robustσ̂βx t P > |t| 95% conf. interval

A 0.8248175 0.0142926 57.71 0.000 0.7946627 0.8549723

B 0.7851133 0.0176889 44.38 0.000 0.7477930 0.8224335

C 0.8238318 0.0160860 51.21 0.000 0.7898933 0.8577702

LA 0.0389506 0.0199635 1.95 0.068 -0.0031687 0.0810699

LB 0.0469380 0.0247687 1.90 0.075 -0.0053194 0.0991954

LC 0.0307979 0.0082316 3.74 0.002 0.0134307 0.0481650

A disadvantage of the relative frequency as an efficiency measure is that it treats every inefficient

allocation in the same way, although it seems reasonable to discriminate between "large" inefficiencies

(where the winner of the auction has a much lower net valuation) and "small" inefficiencies (where both

bidders have similar net valuations.) One approach to discriminate between "small" and "large" ineffi-

ciencies is to compare the outcome of an auction to that of some other allocation mechanism, in particular

a random allocation (see Kirchkamp and Moldovanu, 2004). Recall that in our experiment subjects were

12The method of estimation accounted for possibly correlated observations within matching groups and used independence

between matching groups.
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matched pairwise in each round. In each round every subject specified a bidding schedule that allowed

her to bid against her matching partner in five unrelated auctions. For each of the five auctions in a

round, subjects received a randomly drawn valuation that implied their bids in that auction via the spec-

ified bidding schedule. Letxmax =
P

amax{x1,a, x2,a} wherexi,a denotes the net valuation of bidder

i = 1, 2 in a matching group for auctiona = 1,...,5 in any round. Letxrand =
P

a (x1,a + x2,a) /2,

then the additional surplus that auctions theoretically generate compared to random allocations for any

matched bidder pair isxmax− xrand. Let xw =
P

a x
w
a wherexw

a is the net valuation of the actual winner

of auctiona and define the auction performance index as(xw − xrand)/(xmax− xrand) multiplied by

100 that measures the additional surplus generated from auctions compared to random allocations as a

fraction of the largest additional surplus that can be obtained from any allocation mechanism. The per-

formance index equals 100 if each auction outcome is Pareto-efficient meaning that auctions realized the

maximum surplus that can be generated in addition to expected random allocation surplus. If there is at

least one inefficient outcome, the index is lower than 100. The less similar are net valuations underlying

an inefficient outcome and the fewer efficient outcomes, the larger the efficiency loss and the lower the

performance index. If the outcomes of all five auctions are inefficient, the index equals -100. Table 9

displays the performance indices averaged over matching groups and rounds by treatment.

Table 9: Mean Performance Indices
Treatment rounds 1-6 rounds 7-12 rounds 1-12

A no outside options 81.83 86.98 84.41

B public outside options 71.46 77.12 74.31

C private outside options 76.93 83.14 80.05

To test for treatment differences, letPi,r denote the performance index of the auctions in which

subjecti participated in roundr. Replacing the dependent variable of the above given regression model

with the performance index leads to results that are contained in table 8.13 With the auction performance

index, the time dummies for treatments A and B becomes insignificant whereas that for treatment A

differs significantly from zero. Moreover, there is a significant difference between the coefficients of

treatment dummies A and B (p = 0.0241, two-tailedt-test). There are no significant difference between

the dummy coefficient estimates for A and C and B and C (p > 0.240, two-tailedt-tests).

Taken together, there appears to be evidence that there the degree of efficiency is higher in treatment

A than in treatment B and that seem to be no significant efficiency differences with regard to the type,

public or private, of the outside option. Though the share of Pareto-efficient allocations suggest at first

that there are time effects, these happen to be insignificant with the Performance index.

Another popular approach to operationalize discrimination between "large" and "small" inefficiencies is to

13Again, the method of estimation accounted for possibly correlated observations within matching groups and used indepen-

dence between matching groups.
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Table 10: Regression results: Mean Efficiency Indices by Treatment

expl. var. coeff.̂βx robustσ̂βx t P > |t| 95% conf. interval

A 0.8183129 0.0286358 28.58 0.000 0.7578966 0.8787291

B 0.7146016 0.0305467 23.39 0.000 0.6501536 0.7790496

C 0.7693319 0.0330471 23.28 0.000 0.6996086 0.8390551

LA 0.0514690 0.0404038 1.27 0.220 -0.0337756 0.1367136

LB 0.0566345 0.0461333 1.23 0.236 -0.0406983 0.1539673

LC 0.0620467 0.0197158 3.15 0.006 0.0204500 0.1036435

define the efficiency index as the ratio of the winner’s net valuation to the largest net valuation of the two bidders

multiplied by 100 (see e.g. Cox et al., 1982). The efficiency rate is 100 if the allocation is Pareto-efficient. If it is

lower than 100, the bidder with the highest net valuation has not won the auction. The lower it is, the larger the

gap between the net valuations of the bidders. Mean efficiency rates for treatment A: 98.66, B: 96.53, C: 96.51.

4.5 Concavity of bidding functions

An interesting feature of equilibrium bidding functions with private outside options is their concavity in

valuationsv with uniform distributions that intensifies as the outside option’s value decreases (see section

2.2.4. on page 6). One possibility to capture this property is to define a concavity measure that relates

bid differences corresponding to high valuations to those corresponding to low valuations, particularly

K(wi) ≡
£
bC(60, wi)− bC(50, wi)

¤− £bC(100, wi)− bC(90, wi)
¤

+δ
©£
bC(70, wi)− bC(60, wi)

¤− £bC(90, wi)− bC(80, wi)
¤ª

where0 ≤ δ ≤ 1. The choice of this particular measure is guided by the fact that subjects entered

their bids for valuations 50,60,...,100. For a strictly concave bidding function, the concavity measure is

positive, for a linear function it is zero. The first line aims at capturing the strength of global concavity

assuming the curve to be nonconvex between valuations 60 and 90. The second line revises the concavity

measure downward with weightδ if there is some convexity of the bidding schedule between valuations

60 and 90, concavity over this interval revisesK(wi) upward. For the following discussion, we set

δ = 0.5. All conclusions drawn below do not depend on the particular choice ofδ.

Given the particular equilibrium bidding functionbC(vi, wi), the concavity measure strictly decreases

as the outside option’s value increases. For the largest outside option value we haveK(wi = 50) = 0

sincebC(vi, 50) is a linear function. The theoretical concavity measure is contrasted with its observed

realizations represented by a median spline in figure 11 where the median spline is constructed from in-

dividual bidding data that is subject-wise averaged over rounds with identical outside options.The figure

points to a relationship between the curvature of observed bidding functions and the value of the outside
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Figure 11: Concavity of observed mean bidding functions for private outside options

option that qualitatively matches the theoretical prediction of more intense concavity for low outside op-

tion values. However, the influence of outside options on bidding function concavity seems to be weaker

than theoretically expected. Interestingly, aggregate bidding functions are definitely not convex which

would be indicated by a negative value ofK(wi). A few bidding schedules that we obtained are provided

in the appendix. Robust estimation (that accounts for possibly correlated observations within matching

groups) of the linear modelK = β0 + β1w provides evidence for bidding function concavity (positive

intercept) and a negative relation between concavity and larger outside option valuation (β̂0 = 3.56,

t7 = 4.15, p = 0.014 andβ̂1 = −0.089, t7 = −2.82, p = 0.026).
The discussed concavity property of equilibrium bidding functions is induced by private outside

options. In contrast, equilibrium bidding functions with public outside options are predicted to be linear.

The finding in the data for treatment C that lower outside options lead to a more concave bidding function

is then only an indicator of prediction quality of theory if there is no such relationship in the data for

treatment B. To see this, we robustly estimate the model14

K = β0B + β1B ·w + β2C + β3C · w

with pooled data for treatments B and C where the explanatory variablesB andC serve as treatment-

specific dummy variables. The results are given in table 11 and indicate that for public outside options

neither a significant effect of the outside option value on the concavity measure nor mean concavity

(insignificant intercept) can be identified.15

14The estimation method accounts for possible correlations within matching groups.
15If data for treatment B is augmented by data from treatment A that can be viewed as a special case of treatment B, then

the coefficient of the outside option valueβ̂1 remains insignificant (t15 = −0.53, p = 0.606) but the estimate of the intercept
β̂0 = 1.493 becomes significant (t15 = 3.54, p = 0.003). However, the intercept for treatment C is significantly larger than

24



Table 11: Regression results: Concavity with private and public outside options

expl. var. coeff.̂βx robustσ̂βx t P > |t| 95% conf. interval

B 1.515362 1.532773 0.99 0.341 -1.795993 4.826718

B · w -0.0059506 0.0380048 -0.16 0.878 -0.088055 0.0761538

C 3.557907 0.8332235 4.27 0.001 1.757837 5.357977

C · w -0.0886455 0.0305614 -2.90 0.012 -0.1546695 -0.0226216

Thus, bidding function concavity appears to be related to the value of outside options only if these

are of the private type.

Another prediction related to the curvature of equilibrium bidding functions with private outside

options is its linearity in net valuations ifx ≤ 50 and its strict concavity ifx > 50, see Figure 4 on p.

8. To test if this property is reproduced in the laboratory, we investigate the bidding data forx ≤ 50 and

x > 50 separately and fit to both samples a piecewise-linear function with two segments where segments

connect atx = 25 or x = 75 depending on the sample. If the slope over the first segment equals the

slope over the second segment, the estimated function is linear. If the slope over the first segment is

greater than the slope over the second segment, the estimated function is concave. The two models that

we robustly estimate can be compactly written as16

bi,s = β0,s + β1,sx
1
i,s + β1,sx

2
i,s

whereβ1,s is the slope over the first segment andβ2,s is the slope over the second segment of net

valuations in samples. If xi ≤ 50 thens = 1 otherwises = 3. To directly estimate the segment-specific

slopes, the explanatory data on net valuations is transformed as follows:

x1
i,s =

 xi,s if xi,s ∈ [25(s− 1), 25s]
25s if xi,s ∈ (25s, 25(s+ 1)]

x2
i,s =

 xi,s − 25s if xi,s ∈ [(25s, 25(s+ 1)]
0 if xi,s ∈ (25(s− 1), 25s]

The estimates are summarized in table 12. As predicted, the estimated bidding function in net valuations

is linear over the interval[0, 50] since the slopes over the two segment 0-25 and 25-50 do not significantly

differ (t7 = 1.114, p = 0.3019, two-tailed). In contrast and in line with the prediction, the estimated

bidding function over the interval[50, 100] appears to be concave since its slope over the first segment

50-75(β̂1 = 0.819) is significantly larger than its slope over the second segment 75-100(β̂2 = 0.502;

t7 = 3.889, p = 0.003, one-tailed).

the intercept for treatments A and B(t15 = 2.22, p = 0.0211,one-tailed).
16The estimation procedure allows for possibly correlated observations within matching groups.
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Table 12: Regression results: Concavity of estimated bidding functionbC(x)

sample expl. var. coeff.̂βx robustσ̂βx t P > |t| 95% conf. interval

s = 1 constant 2.450964 1.916258 1.28 0.242 -2.080265 6.982194

(x ≤ 50) x0-25
≤50 0.7826128 0.054495 14.36 0.000 0.6537527 0.9114729

x25-50
≤50 0.7081456 0.0232956 30.40 0.000 0.6530603 0.763231

s = 3 constant -0.7507278 2.050539 -0.37 0.725 -5.599482 4.098026

(x > 50) x50-75
>50 0.8189925 0.0278745 29.38 0.000 0.7530797 0.8849053

x75-100
>50 0.5018675 0.07169889 7.00 0.000 0.3323267 0.6714084

5 Conclusion

We have introduced a bidding model that allows for public and private outside option and experimentally

tested it. A key feature of our experimental design is that we collected entire bidding functions. Theoret-

ically, higher-valued outside options lead to less aggressive bidding (ie. lower bids) than the first-price

model without outside options. Our experimental data reproduces this prediction. Private outside options

differ from public outside options in the set of common knowledge. This difference theoretically implies

that bidders respond to an increase of their outside option value with a larger reduction of bids under the

public outside option regime. This prediction is confirmed by the data. Private outside options should

lead to concave bidding functions, especially for low outside option values. We found this pattern in the

data on the aggregate level. However, the degree of concavity that is present in the data is much lower

than predicted. The stylized fact of "overbidding" is partially reproduced in our experiments. Taken

together, our analysis suggests that outside options crucially influence bidding behavior in a way that

is qualitatively predicted by theory and that the particular nature of outside options matters. However,

actual bidding behavior seems to deviate from the predictions in important ways.
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6 Appendix

Screenshots
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Bidding data for the first round Treatment A with 230 observed bids in the first round:

0

10

20

30

40

50

60

70

80

90

100

50 60 70 80 90 100
net valuation x

Bidding data for treatment A (inital bids)

Treatment B with bids submitted in the first round:

0

20

40

60

80

100

0 20 40 60 80 100
net valuation x

Bidding data for treatment B (initial bids)

Treatment C with bids submitted in the first round:

0
20

40
60

80
10

0

0 20 40 60 80 100
net valuation x

Bidding data for treatment C (initial bids)

28



Sample of observed bidding schedules / Treatment C
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