Workflow of statistical data analysis

Oliver Kirchkamp
Workflow of empirical work may seem obvious. It is not. Small initial mistakes can lead to a lot of hard work afterwards. In this course we discuss some techniques that hopefully facilitate the organisation of your empirical work.

This handout provides a summary of the slides from the lecture. It is not supposed to replace a book.

Many examples in the text are based on the statistical software R. I urge you to try these examples on your own computer.

As an attachment of this PDF you find a file wf.zip with some raw data. You also find a file wf.Rdata with some R functions and some data already in R’s internal format.

The drawing on the previous page is Albercht Dürer’s “Der Hafen von Antwerpen” — an example for workflow in a medieval city.

Contents

1 Introduction .. 5
 1.1 Motivation .. 5
 1.2 Structure of a paper .. 6
 1.3 Aims of statistical data analysis 7
 1.4 Creativity and chaos .. 8
 1.5 Making the analysis reproducible 11
 1.6 Preserve raw data .. 12
 1.7 Interaction with coauthors ... 12

2 Digression: R .. 12
 2.1 Installing R ... 12
 2.2 Types and assignments .. 13
 2.3 Functions ... 18
 2.4 Random numbers .. 18
 2.5 Example Datasets ... 19
 2.6 Graphs ... 22
 2.7 Basic Graphs .. 22
 2.7.1 Plotting functions .. 23
 2.7.2 Empty plots .. 24
 2.7.3 Line type .. 24
 2.7.4 Points .. 25
 2.7.5 Legends ... 25
 2.7.6 Auxiliary lines .. 26
 2.7.7 Axes ... 27
 2.8 Fancy math ... 28
 2.8.1 Several diagrams .. 28
 2.9 Tables .. 30
 2.10 Regressions .. 30
 2.11 Starting and stopping R ... 31
1 Introduction

1.1 Motivation

Literature: Surprisingly, there is not much literature about workflow of statistical data analysis:

General Literature
- Christopher Gandrud; Reproducible Research with R and RStudio, 2015.
- Garrett Grolemund, Hadley Wickham; R for Data Science, 2017.

Literate Programming
- Friedrich Leisch; Sweave User Manual.
- Nicola Sartori; Sweave = R • \LaTeX
- Yihui Xie; knitr - Elegant, flexible, and fast dynamic report generation with R
- Max Kuhn; CRAN Task View: Reproducible Research.

Version control
- Scott Chacon, Ben Straub; Pro Git.
- Ben Collins-Sussman, Brian W. Fitzpatrick, C. Michael Pilato; Version Control with Subversion.

R
- Hadley Wickham; Advanced R.

What is empirical research?

- We spend a lot of time explaining statistical methods to students.
• We do not tell students how to apply statistical methods, how to organise their data, how to organise their work...

• Why?

• Is “workflow” obvious? — I do not think so.
 Is the wrong workflow not costly? — On the contrary.
 – Mistakes in the statistical method can always be cured.
 – Mistakes in the workflow can render the entire project invalid — no cure possible (e.g. loss of data, loss of understanding the data, loss of methods applied)

• Isn’t it sufficient to simply store and backup everything?
 – unfortunately not — statistical analysis tends to create a lot of data. → storing everything means hiding everything very well from us and from others.

Reproducibility “...the data and code used to make a finding are available and they are sufficient for an independent researcher to recreate the finding.”

Why do we want reproducibility?

• It helps if you can reproduce your own work!

• Reproducability → structure → managing multiple projects is much easier when each project has a clear structure.

• Collaborators: It helps your coauthors if they can reproduce your work.

• Other scientists: If they can’t reproduce your work it does not help them.
 The more of your work you sell to the world, the larger your impact.
 (Showing others what you did and how you did it is good!)

1.2 Structure of a paper

• Describe the research question
 Which *economic model* do we use to structure this question?
 Which *statistical model* do we use for inference? (Estimation, hypothesis testing, classification...)

• Describe the economic method (experiment, field data, ...)

• Describe the sample
 How many observations, means, distributions of main variables, key statistics
 Is there enough variance in the independent variables to test what we want to test?
• Statistical inference (estimate, test hypotheses, classify,...)
 possibly different variants of the model (increasing complexity)
• Discuss the model, robustness checks

1.3 Aims of statistical data analysis

• Limit work and time
• Get interesting results
• Reproducability
 – for us, to understand our data and our methods after we get back to work after a break
 – for our friends (coauthors), so that they can understand what we are doing
 – for our enemies — we should always (even years after) be able to prove our results exactly

• If statistical analysis was a straightforward procedure, then there would be no problem:
 – Store the raw data. All methods we apply are obvious and trivial.
• In the real world our methods are far from obvious:
 – We think quite a lot about details of our statistical analysis
• Assume we have another look at our paper (and our analysis) after a break of 6 months:
 – What does it mean if sex==1 ?
 – For the variable meanContribution: was the mean taken with respect to all players and the same period, or with respect to the same player and all periods, or ...
 – What is the difference between payoff and payoff2...
 – Do the tables and figures in version 27 of the paper ...
 * ...refer to all periods of the experiment or only to the last 6 periods?
 * ...do they include data from the two pilot experiments we ran?
 * ...do they refer to the “cleaned” dataset, or to the “cleaned dataset in long form” (where we eliminated a few outliers)
 * Do all tables and figures and p-values and t-tests... actually refer to the same data? (or do some include outliers, some not,...)

Assume we take only 10 not completely obvious decisions between two alternatives during our analysis (which perhaps took us 1 week)....
(coding of data, data to include, treatments to compare, lags to include, outliers to remove, interaction terms to include, types of model comparison, dealing with non-linearities, correlation structure of error terms, ...)

... → we will have to explore $2^{10} = 1024$ variants of our analysis (= 1024 weeks) to recover what we actually did.

Often we take more than 10 not completely obvious decisions.

→ we should follow a workflow that facilitates reproducibility.

This is not obvious, since workflow is (unfortunately) not linear:

During this process we create a lot of intermediate results. How can we organise these results?

Solutions and restrictions:

- Store everything? — Not feasible! (Often our analysis will create a lot of data. Later we don’t know what is relevant and what is not.)

- We want to be creative, take shortcuts, we want to explore things, play with different representations of a solution...

- During this phase we can not document everything.

1.4 Creativity and chaos

Progress in research is not linear:
version control!

- CVS
- SVN
- Git
- Mercurial
- Bazaar

alternatively: living two lives:

- creative (undocumented)
- permanent (documented)

(We must be aware whether we are in “creative” or in “permanent” mode).

Let our computer(s) reflect these two lives:

```bash
./projectXYZ/
  /permanent/
    /rawData
    /cleanData
    /R
    /Paper
    /Slides
  /creative/
    /cleanData
    /R
    /Paper
    /Slides
```

You might need more directories for your work.

(In terms of version control, which we will cover later, “permanent” could be a trunk, while “creative” could be a branch)

Rules

1. Anything that we give to other people (collaborators, journals,...) must come entirely from permanent
2. Never delete anything from permanent

3. Never change anything in permanent

4. We must be able trace back everything in permanent clearly to our raw data.

Since we give things to other people more than once (first draft, second draft,…, first revision, …, second revision,…), we must be able to replicate each of these instances.

Consequences — permanent data has versions (Below we will discuss the advantages of a version control system (git, svn). Let us assume for a moment that we have to do everything manually.)

- We will accumulate versions in our permanent life (do not delete them, do not change them)

cleaned_data_180521.Rdata
cleaned_data_180522.Rdata
cleaned_data_180522b.Rdata
:
preparingData_180521.R
preparingData_180522.R
descriptives_180522.R
econometrics_180523.R
:
paper_180524.Rnw
paper_180525.Rnw
paper_180527.Rnw
:

- Nobody wants to see all these versions at the same time.

- Version control shows only the “relevant” version to us – still, all other versions are preserved.

What is the optimal workflow? The optimal workflow is different for each of us

Aims

- Exactness (allow clear replication)

- Efficiency

- We must like it (otherwise we don’t do it)

- Whatever we do, we should do it in a systematic way
 - Follow a routine in our work (all projects should follow similar conventions)
Let the computer follow a routine (a mistake made in a routine will show up “routinely”, a hand coded mistake is harder to detect).

Use functions, try to make them as general as possible.

Prepare for the unexpected! We should not assume that our data will always look the way it seems to look at the moment.

More on routines
Example:

- Probability to make a mistake: 0.1
- Probability to discover (and fix) a mistake: 0.8

Now you solve two related problems, A and B:

- Both problems are solved independently:
 - Probability of (undiscovered) mistake A: 0.1 \cdot 0.2
 - Probability of (undiscovered) mistake B: 0.1 \cdot 0.2
 - Probability of some undiscovered mistake: 1 - .98^2 \approx 0.04

- Both problems are solved with the same routine (one function in your code):
 - Probability of some undiscovered mistake: 0.1 \cdot 0.2 \cdot 0.2 = 0.004

Producing your results with the help of identical (and computerised) routines makes it much easier to discover mistakes.

1.5 Making the analysis reproducible

Here are again the steps in writing a paper:

1. organise raw data
2. descriptive analysis (figures, descriptive tables...)
3. develop methods for analysis
4. get results (run program code)
5. write paper (mix results with text and explanations)
6. interact with collaborators

- All these tasks require decisions.
- All these decisions should be documented.
- When is our documentation sufficient? — If a third person, without our help, can find out what we were doing in all the above steps. If we want to have another look at our data in one year’s time we will be in the same position as an outsider today.
- We keep a log where we document the above steps for a given project on a daily basis (research log) (nobody wants to keep logs, so this must be easy)
1.6 Preserve raw data

- If our raw data comes from z-Tree experiments: We better keep all programs (the current version can always be found as @1.ztt,...in the working directory).
- If our raw data includes data from a questionnaire:
 - We need a codebook
 * variable name — question number — text of the questions
 * branching in the questionnaire
 * levels (value labels) used for factors
 * missing data, how was it coded?
 * cleaned data, how was it cleaned? (if we have no access to the raw data)

1.7 Interaction with coauthors

- Clear division of labour
 - the “experimenter” decides how the experiment is actually run
 - the “empiricist” decides what statistics and graphs are produced
 - the “writer” decides how to present the text
 - help, do not interfere
- In your communication: concentrate on the essentials:
 - exchange one file
 - make only essential changes to this file
 - clearly explain why these changes are necessary

2 Digression: R

For the purpose of the course we take R as an example for one statistical language. Even if you use other languages for your work, you will find that the concepts are similar.

2.1 Installing R

On the [Homepage of the R Projekt](https://cran.r-project.org/) you find in the menu on the left a link Download / CRAN. This link leads to a choice of “mirrors”. If you are in Jena, the GWDG Mirror in Göttingen might be fast. There you also find instructions how to install R on your OS.

Installing Libraries If the command `library` complains about not being able to find the required library, then the library is most likely not installed. The command
install.packages("Ecdat")

installs the library Ecdat. Some installations have a menu “Packages” that allows you to install missing libraries. Users of operating systems of Microsoft find support at the FAQ for Packages.

2.2 Types and assignments

R knows about different types of data. We will meet some types in this chapter. To assign a number (or a value, or any object) to a variable, we use the operator <-

```r
x <- 4
```

R stores the result of this assignment as double

```r
typeof(x)
```

[1] "double"

Now we can use x in our calculations:

```r
2 * x
```

[1] 8

```r
sqrt(x)
```

[1] 2

Often our calculations will not only involve a single number (a scalar) but several which are connected as a vector. Several numbers are connected with c

```r
x <- c(21,22,23,24,25,16,17,18,19,20)
x
```


When we need a long list of subsequent numbers, we use the operator : or the function seq

```r
y <- 21:30
```


```r
seq(21,30)
```


y <- 21:30
Subsets We can access single elements of a vector with \([\]\)

\[
x[1]
\]

\[
[1] 21
\]

When we want to access several elements at the same time, we simply use several indices (which are connected with `c`). We can use this to change the sequence of values (e.g. to sort).

\[
x[c(3,2,1)]
\]

\[
[1] 23 22 21
\]

\[
x[3:1]
\]

\[
[1] 23 22 21
\]

\[
x
\]

\[
\]

(to sort a long vector we would use the function `order`).

\[
order(x)
\]

\[
[1] 6 7 8 9 10 1 2 3 4 5
\]

\[
x[order(x)]
\]

\[
[1] 16 17 18 19 20 21 22 23 24 25
\]

(order determines an “ordering”, i.e. a sequence in which the elements of the vector should be used to be “ordered”. We use \(x[\ldots]\) to see the ordered result.)

Negative indices drop elements:

\[
x[-1:-3]
\]

\[
[1] 24 25 16 17 18 19 20
\]

Logicals Logicals can be either \texttt{TRUE} or \texttt{FALSE}. When we compare a vector with a number, then all the elements will be compared (this follows from the \textit{recycling rule}, see below):

\[
x
\]

\[
\]

\[
x < 20
\]

\[
[1] \text{FALSE FALSE FALSE FALSE TRUE TRUE TRUE TRUE FALSE}
\]

\[
typeof(x < 20)
\]

\[
[1] "logical"
\]
We can use logicals as indices, too:

```r
x [ x < 20 ]
```

```
[1] 16 17 18 19
```

Characters Not only numbers, also character strings can be assigned to a variable:

```r
x <- "Mary"
typeof(x)
```

```
[1] "character"
```

We can also work with vectors of character strings:

```r
x <- c("John", "Mary", "Jane")
x[2]
```

```
[1] "Mary"
```

```r
x[3] <- "Lucy"
x
```

```
[1] "John" "Mary" "Lucy"
```

Factors Often it is clumsy to store a string of characters again and again if this string appears in the dataset several times. We might, e.g., want to store whether an observation belongs to a man or a woman. This can be done in an efficient way by storing 2 for "male", and 1 for "female".

```r
x <- factor(c("male", "female", "female", "male"))
typeof(x)
```

```
[1] "integer"
```

```r
class(x)
```

```
[1] "factor"
```

```r
levels(x)
```

```
[1] "female" "male"
```

```r
x[2]
```

```
[1] female
```

```r
Levels: female male
```

```r
as.numeric(x)
```

```
[1] 2 1 1 2
```
Usually the first level in a factor is the level that comes first in the alphabet. If we do not want this, we can `relevel` a factor:

```r
x <- relevel(x, "male")
x
[1] male female female male
Levels: male female
```

```r
as.numeric(x)
[1] 1 2 2 1
```

Note that the meaning of the values remains unchanged.

Sometimes, when we have more than only two levels, we want to order levels of a factor along a third variable. This is done by `reorder`.

```r
ty <- c(12, 7, 8, 11)
x <- reorder(x, y)
x
[1] male female female male
attr(, "scores")
  male female
  11.5  7.5
Levels: female male
```

```r
as.numeric(x)
[1] 2 1 1 2
```

Lists Lists allow us to combine different data types in one element:

```r
x <- list(a=123, b="hello world", c=3)
x[[1]]
[1] 123
x[["a"]]
[1] 123
x$a
[1] 123
x$b
[1] "hello world"
```

Nested lists:
```r
y <- list(g=456,h="hello world",i=x)
y$i$c

[1] 3

y[["i"]][["c"]]

[1] 3
typeof(y)

[1] "list"
class(y)

[1] "list"
```

Dataframes Often we use “rectangular” data structures, i.e. lists where all elements are vectors of the same length.

```r
x <- data.frame(a=1:3,b=c("a","b","c"))
x

 a b
1 1 a
2 2 b
3 3 c

x$a

[1] 1 2 3

x$b

[1] a b c
Levels: a b c

x[["b"]]

[1] a b c
Levels: a b c

x[,"b"]

[1] a b c
Levels: a b c

x[1:2,]
```
2.3 Functions

R knows many built-in functions:

```
mean(x)
median(x)
max(x)
min(x)
length(x)
unique(c(1,2,3,4,1,1,1))
```

When we need more, we can write our own:

```
square <- function(x) {
  x*x
}
```

The last expression in a function (here \(x \times x\)) is the return value. Now we can use the function.

```
square(7)
```

```
[1] 49
```

When we want to apply a function to many numbers, `sapply` helps:

```
range <- 1:10
sapply(range, square)
```

```
[1] 1 4 9 16 25 36 49 64 81 100
```

With `sapply` we do not have to define a name for a function:

```
sapply(range, function(x) x*x)
```

```
[1] 1 4 9 16 25 36 49 64 81 100
```

2.4 Random numbers

Random numbers can be generated for rather different distributions. R calculates pseudo-random numbers, i.e. R picks numbers from a very long list that appears random. Where we start in this long list is determined by `set.seed`:

```
typeof(x)
```

```
[1] "list"
```
set.seed(123)

10 pseudo-random numbers from a normal distribution can be obtained with

\texttt{rnorm(10)}

\begin{verbatim}
[1] -0.56047565 -0.23017749 1.55870831 0.07050839 0.12928774 1.71506499
[7] 0.46091621 -1.26506123 -0.68685285 -0.44566197
\end{verbatim}

We get the same list when we initialise the list with the same starting value:

\texttt{set.seed(123)}
\texttt{rnorm(10)}

\begin{verbatim}
[1] -0.56047565 -0.23017749 1.55870831 0.07050839 0.12928774 1.71506499
[7] 0.46091621 -1.26506123 -0.68685285 -0.44566197
\end{verbatim}

This is very useful, when we want to replicate the same “random” results.
10 uniformly distributed random numbers from the interval \([100; 200]\) can be obtained with

\texttt{runif(10, min=100, max=200)}

\begin{verbatim}
[1] 188.9539 169.2803 164.0507 199.4270 165.5706 170.8530 154.4066 159.4142
[9] 128.9160 114.7114
\end{verbatim}

Often we use random numbers when we simulate (stochastic) processes. To replicate a process we use the command \texttt{replicate}. E.g.

\texttt{replicate(10, mean(rnorm(10)))}

\begin{verbatim}
[1] 0.016749257 -0.024755975 0.061320514 -0.028205903 0.087712299
[6] -0.025113287 -0.141043824 0.123989920 0.109293109 -0.002743263
\end{verbatim}

takes 10 times the mean of each 100 pseudo-normally distributed random numbers.

\subsection*{2.5 Example Datasets}

We just saw that the command \texttt{c} allows us to describe the elements of a vector. For long datasets this is not very convenient. \texttt{R} contains already a lot of example datasets. These datasets are, similar to statistical functions, organised in libraries. To save space and time \texttt{R} does not load all libraries initially. The command \texttt{library} allows us to load a library with a dataset at any time.

The library \texttt{Ecdat} provides a lot of interesting economic datasets. The library \texttt{memisc} gives access to some interesting functions that help us organising our data.

When we need a specific function and we do not know in which library to look for this function we can use the command \texttt{RSiteSearch} or the \texttt{R Site Search Extension} for Firefox.

The dataset \texttt{BudgetFood} is, e.g., contained in the library \texttt{Ecdat}.
To see the first few records, we can use the command `head`:

```r
head(BudgetFood)
```

<table>
<thead>
<tr>
<th></th>
<th>wfood</th>
<th>totexp</th>
<th>age</th>
<th>size</th>
<th>town</th>
<th>sex</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.468</td>
<td>1290941</td>
<td>43</td>
<td>5</td>
<td>2</td>
<td>man</td>
</tr>
<tr>
<td>2</td>
<td>0.313</td>
<td>1277978</td>
<td>40</td>
<td>3</td>
<td>2</td>
<td>man</td>
</tr>
<tr>
<td>3</td>
<td>0.376</td>
<td>845852</td>
<td>28</td>
<td>3</td>
<td>2</td>
<td>man</td>
</tr>
<tr>
<td>4</td>
<td>0.439</td>
<td>527698</td>
<td>60</td>
<td>1</td>
<td>2</td>
<td>woman</td>
</tr>
<tr>
<td>5</td>
<td>0.403</td>
<td>1103220</td>
<td>37</td>
<td>5</td>
<td>2</td>
<td>man</td>
</tr>
<tr>
<td>6</td>
<td>0.199</td>
<td>1768128</td>
<td>35</td>
<td>4</td>
<td>2</td>
<td>man</td>
</tr>
</tbody>
</table>

The command `str` shows the structure of an object:

```r
str(BudgetFood)
```

' data.frame': 23972 obs. of 6 variables:
$ wfood : num 0.468 0.313 0.376 0.44 0.404 ...
$ totexp: num 1290941 1277978 845852 527698 1103220 ...
$ age : num 43 40 28 60 37 35 40 68 43 51 ...
$ size : num 5 3 3 1 5 4 4 2 9 7 ...
$ town : num 2 2 2 2 2 2 2 2 2 2 2 ...
$ sex : Factor w/ 2 levels "man","woman": 1 1 1 2 1 1 1 2 1 1 ...

Usually we do not want to see many numbers. Instead we want to derive (in a structured way) a few numbers (parameters, confidence intervals, p-values,...) The command `help` aids us in finding out the meaning of the numbers of the different columns of a dataset.

```r
help(BudgetFood)
```

An important command to get a summary is `summary`

```r
summary(BudgetFood)
```

How can we access specific columns from our dataset? Since R may have several datasets at the same time in its memory, there are several possibilities. One possibility is to append the name of the dataset `BudgetFood` with a `$` and then the name of the column.

```r
BudgetFood$age
```

This is helpful when we work with several different datasets at the same time. The example also shows that R does not flood our screen with long lists of numbers. Instead we only see the first few numbers, and then the text “omitted ... entries”.

When we want to use only one dataset, then the command `attach` is helpful.
attach(BudgetFood)

age

[1] 43 40 28 60 37 35 40 68 43 51 43 48 51 58 61 53 58 64 50 50 47 76 49 44 49
[26] 51 56 63 30 70 29 60 50 56 36 46 43 32 45 34

[reached getOption("max.print") -- omitted 23932 entries]

From now on, all variables will first be searched in the dataset BudgetFood. When we no longer want this, then we say

detach(BudgetFood)

A third possibility is the command with:

with(BudgetFood,age)

[1] 43 40 28 60 37 35 40 68 43 51 43 48 51 58 61 53 58 64 50 50 47 76 49 44 49
[26] 51 56 63 30 70 29 60 50 56 36 46 43 32 45 34

[reached getOption("max.print") -- omitted 23932 entries]

We often use with when we use a function and want to refer to a specific dataset in this function. E.g. hist shows a histogram:

with(BudgetFood,hist(age))

Most commands have several options which allow you to fine-tune the result. Have a look at the help-page for hist (you can do this with help(hist)). Perhaps you prefer the following graph:

with(BudgetFood,hist(age,breaks=40,xlab="Age [years]",col=gray(.7),main="Spain"))
2.6 Graphs

There is more than one way to represent numbers as graphs.

2.7 Basic Graphs

Here are three basic graphs:

```r
with(BudgetFood, {
  hist(age)
  plot(density(age))
  boxplot(age ~ sex, main="Boxplot")
})
```

Two further helpful plots are `ecdf` and `qqnorm`:
Sometimes it is obvious how to prepare our data for these functions. Sometimes it is more complicated. Then other commands help and calculate an object that can be plotted (with `plot`)

- `density, ecdf, xyplot...

Some commands then plot whatever we have prepared:

- `plot, hist, boxplot, barplot, curve, mosaicplot,...`

Yet other commands add something to an existing plot:

- `points, text, lines, abline, qqline...

2.7.1 Plotting functions

We can plot functions of x with `curve`.

```r
curve(dchisq(x, 3), from = 0, to = 10)
```
2.7.2 Empty plots

Sometimes it is helpful to start with an empty plot. Then we have to help `plot` a little bit. Usually, `plot` can guess from the data the limits and labels of the axes. With an empty plot we have to specify them explicitly.

```r
plot(NULL, xlim=c(0,10), ylim=c(-3,6), xlab="x", ylab="y", main="an empty plot")
```

2.7.3 Line type

Almost all commands that draw lines follow the following conventions:

- `lty` linetype ("dashed", "dotted", or simply a number)

```r
plot(NULL, ylim=c(1,6), xlim=c(0,1), xaxt="n", ylab="lty", las=1)
sapply(1:6, function(lty) abline(h=lty, lty=lty, lwd=5))
```
• `lwd` linewidth (a number)

• `col` colour ("red", "green", gray(0.5))

2.7.4 Points

The character used to draw points is determined with `pch`.

```r
range=1:20
plot(range,range/range,pch=range,frame=FALSE)
text(range,range/range+.2,range)
```

2.7.5 Legends

When we use more than one line or more than one symbol in our plot we have to explain their meaning. This is done in a legend.

Usually `legend` gets as an option a vector of linetypes `lty` and symbols `pch`. They will be used to construct example lines and symbols next to the actual text of the legend. If the `lty` or `pch` is `NA`, then no line or point is drawn.

```r
plot(NULL,xlim=c(0,10),ylim=c(-3,6),xlab="x",ylab="y",main="empty plot")
legend("topleft",c("Text 1","more Text","even more"),lty=1:3,pch=1:3)
legend("bottomright",c("no line no symbol","line only","line and symbol","symbol only"),
    lty=c(NA,2,3,NA),pch=c(NA,NA,3,4),bg="white")
```
2.7.6 Auxiliary lines

The command `abline` allows us to add auxiliary lines to a plot.

```r
plot(NULL, xlim=c(0,10), ylim=c(-3,6), xlab="x", ylab="y", main="main title")
abline(h=2:6, lty="dotted")
abline(v=5, lty="dashed")
abline(a=-1, b=1, lwd=5, col=grey(.7))
legend("bottomright", c("h", "v", "a/b"), lty=c("dotted", "dashed", "solid"), col=c("black", "black", grey(.7)))
```

`abline` knows the following important parameters:

- **h** = for horizontal lines
• \(v = \) for vertical lines
• \(a = \ldots, \ b = \ldots \) for lines with intercept \(a \) and slope \(b \)

Note, that these arguments can be vectors if we want to draw several lines at the same time.

2.7.7 Axes

The options \(\text{log} = 'x', \text{log} = 'y' \) or \(\text{log} = 'xy' \) determine whether which axis is shown in a logarithmic style.

```r
data(PE, package = "Ecdat")
xx <- data.frame(PE)
attach(xx)

plot(price, earnings)
```

To gain more flexibility `axis` can draw a wide range of axes. Before using `axis` the previous axes can be removed entirely (`axes=FALSE`) or suppressed selectively (`xaxt="n"` or `yaxt="n"`).

```r
plot(price, earnings, log="xy", axes=FALSE)
plot(price, earnings, log="xy", xaxt="n")
axis(1, at=c(5,10,20,40, 80,160,320,640,1280))
```
If we specify a lot of axes labels, as in the example above, R does not print them all if they overlap.

2.8 Fancy math

R can also render more than only textual labels. If you use tikz as an output device you can use \LaTeX-notation. Otherwise you can use \texttt{plotmath}.

```r
plot(price, earnings, xlab=’$\pi_1$’, ylab=’$\gamma_0$’,
     main=’the $\int_\theta^\infty \sqrt{\xi} d\phi$’)
abline(lm(earnings~price))
legend(’bottomright’, c(’legend’, ”$\xi^2$”, ”line $\phi$”),
       pch=c(NA,1,NA), lty=c(NA,NA,1))
```

![Graph showing the integral of the square root of \(\xi\) from 0 to infinity.](image)

2.8.1 Several diagrams

Diagrams side by side

To put several diagrams on one plot side by side we can call \texttt{par(mfrow=c(...))} or \texttt{layout} or \texttt{split.screen}.

```r
par(mfrow=c(1,2))
with(BudgetFood, {
  hist(age)
  plot(density(age))
})
```
Superimposed graphs

- Anything that can create lines or points (like `density` or `ecdf`) can immediately be added to an existing plot.

- Plot-objects that would otherwise create a new figure (like `plot`, `hist`, or `curve`) can be added to an existing plot with the optional parameter `add=TRUE`.

```r
with(BudgetFood, {
  plot(density(age), lwd=2)
  lines(density(age[sex=="man"], na.rm=TRUE),
        lty=3, lwd=2, col="green")
  hist(age, freq=FALSE, add=TRUE)
  curve(dnorm(x, mean(age), sd(age)),
        add=TRUE, lty=2, col="blue")
})
```

Coplots We will discuss coplots in section ??.
2.9 Tables

Tables of frequencies The command `table` calculates a table of frequencies. Here we show only the first 16 columns:

```r
with(BudgetFood, table(sex, age))[, 1:16]
```

<table>
<thead>
<tr>
<th>sex</th>
<th>16</th>
<th>17</th>
<th>18</th>
<th>19</th>
<th>20</th>
<th>21</th>
<th>22</th>
<th>23</th>
<th>24</th>
<th>25</th>
<th>26</th>
<th>27</th>
<th>28</th>
<th>29</th>
<th>30</th>
<th>31</th>
</tr>
</thead>
<tbody>
<tr>
<td>man</td>
<td>3</td>
<td>6</td>
<td>21</td>
<td>21</td>
<td>36</td>
<td>37</td>
<td>87</td>
<td>100</td>
<td>132</td>
<td>201</td>
<td>210</td>
<td>248</td>
<td>254</td>
<td>329</td>
<td>367</td>
<td>363</td>
</tr>
<tr>
<td>woman</td>
<td>0</td>
<td>2</td>
<td>7</td>
<td>9</td>
<td>12</td>
<td>21</td>
<td>19</td>
<td>21</td>
<td>22</td>
<td>26</td>
<td>18</td>
<td>28</td>
<td>10</td>
<td>25</td>
<td>28</td>
<td>12</td>
</tr>
</tbody>
</table>

Other statistics The command `aggregate` groups our data by levels of one or several factors and applies a function to each group. In the following example the factor is `sex`, the function is the `mean` which is applied to the variable `age`.

```r
with(BudgetFood, aggregate(age ~ sex, FUN = mean))
```

<table>
<thead>
<tr>
<th>sex</th>
<th>age</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>49.08985</td>
</tr>
<tr>
<td>2</td>
<td>59.47445</td>
</tr>
</tbody>
</table>

2.10 Regressions

Simple regressions can be estimated with `lm`. The operator `~` allows us to describe the regression equation. The dependent variable is written on the left side of `~`, the independent variables are written on the right side of `~`.

```r
lm(wfood ~ totexp, data = BudgetFood)
```

Call:
`lm(formula = wfood ~ totexp, data = BudgetFood)`

Coefficients:
```
(Intercept) totexp
0.4950397225 -0.0000001348
```

The result is a bit terse. More details are shown with the command `summary`.

```r
summary(lm(wfood ~ totexp, data = BudgetFood))
```

Call:
`lm(formula = wfood ~ totexp, data = BudgetFood)`

Residuals:
```
     Min       1Q   Median       3Q      Max
-0.49307 -0.09374 -0.01002  0.08617  1.06182
```
Coefficients: Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.495039722500 0.001561819134 316.96 <2e-16 ***
totexp -0.000000134849 0.000000001459 -92.41 <2e-16 ***
--- --- --- ---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.1422 on 23970 degrees of freedom
Multiple R-squared: 0.2627, Adjusted R-squared: 0.2626
F-statistic: 8540 on 1 and 23970 DF, p-value: < 2.2e-16

2.11 Starting and stopping R

Whenever we start R, the program attempts to find a file .Rprofile, first in the current working directory, then in the home directory. If the file is found, it is “sourced”, i.e. all R commands in this file are executed. This is useful when we want to run the same commands whenever we start R. The following line

```r
options(browser = "/usr/bin/firefox")
```

in .Rprofile makes sure that the help system of R always uses firefox. Also when we quit R with the command q(), the application tries to make our life easier.

```r
q()
```

R first asks us

Save workspace image? [y/n/c]:

Here we have the possibility to save all the data that we currently use (and that are in our workspace) in a file .Rdata in the current working directory. When we start R for the next time (from this directory) R automatically reads this file and we can continue our work.

3 Organising work

3.1 Scripting

Most of the practical work in data analysis and statistics can be seen as a sequence of commands to a statistical software.

How can we run these commands?

Execute commands in command window
(or with mouse and dialog boxes)

- clumsy
- hard to repeat actions
• hard to replicate what we did and why we did it (logs don’t really help).
• hard to find mistakes (structure of the mistake is easy to overlook).

Write file (.R or .do)
execute single lines (or small regions) from the file while editing the file.

• great way to creatively develop code line by line.
 Not reproducible since the file changes permanently.
• one window with the file, another window with mainly the R output

Write source file (.R or .do)
open it in an editor and then always execute the entire file (while editing the file).

• great way to creatively develop larger parts of code

Steps of analysis are in...

Source files
Source “public” files (.R or .do) from a “master file”

```
source("read_data_180715.R")
source("clean_data_180715.R")
source("create_figures_180715.R")
```

This is the first step to reproducible research. When our script seems to do what it is supposed to do, we make it “public”, give it a unique name, and never change it again.

Functions
From a master file, first source a file which defines functions. Then call these functions.

```
source("functions_XYZ_180715.R")
read_data()
clean_data()
create_figures()
```

This is even better since functions (which belong together) are kept together in one file.

Advantages of using source files (with or without functions):

• We keep a record of our work.
• We can work incrementally, fix mistakes and introduce small changes (if we refer to a public file, we should work on a copy of this file with a new name).
• We can use the editor of our choice (Emacs is a nice editor)
Advantage of using functions:

- functions can take parameters.
- several functions go in one file (still do not harm each other).

 Systematic changes are easier with only one file (things that belong together stay together).

Regardless whether we divide our work into source files or into functions: This division allows us to save time. Some of these steps take a lot of time. Once they work, we do not have to do them over and over again.

3.2 Robustness

How can we make our work “robust”? Remember:

- The structure of the data may change over time.

 - New variables might come with new treatments of our experiment.

 - New treatments might require that we code variables differently.

- Commands may not only run on our computer.

- Commands are not always sourced in the same context.

- Our random number generator may start from different seeds.

3.2.1 Robustness towards different computers

We better use relative pathnames.

Assume that on my computer the script is stored in

```
/home/oliver/projectXYX/R
```

next to it we have

```
/home/oliver/projectXYX/data/munich/1998/test.Rdata
```

From the script I might call either (absolute path)

```
load(file="/home/oliver/projectXYX/data/munich/1998/test.Rdata")
```

or (relative path)

```
load(file="../data/munich/1998/test.Rdata")
```

The latter assumes that there is a file

```
../data/munich/1998/test.Rdata
```

next to the script. But it does not assume that everything is in

```
/home/oliver/projectXYZ
```

Hence, the latter works even if my coauthor has stored everything as
If a lot happens in `.\data\munich\1998/` anyway, use the `setwd` command

```r
setwd("..\data\munich\1998")
...
load(file="test.Rdata")
```

(and remember to make the `setwd` relative, i.e. avoid the following:

```r
setwd("/home/oliver/projectXYZ/data/munich/1998")
...
```

).

3.2.2 Robustness against changes of directories

Although the following function might change the working directory, `on.exit()` remembers to revert the original state.

```r
define <- function() {
  oldDir <- setwd(dir)
  on.exit(setwd(old))
  do.something(...)
  do.something.else(...)
}
```

3.2.3 Robustness against changes in context

Assume we have the following two files

```r
# script1.R
load("someData.Rdata")
# now two variables, x and y are defined
source("script2.R")
```

The content of `script2.R` might be this:

```r
# script2.R
est <- lm ( y ~ x)
```

In this example `script2.R` *assumes* that variables `y` and `x` are defined. As long as `script2.R` is called in this context, everything is fine. Changing `script1.R` might have unexpected side effects since we transport variables from one script to the other. The call

```r
source("script2.R")
```

does not reveal how `y` and `x` are used by the script.
3.2.4 Verify assumptions

Often we assume a condition, but we can not be really sure:

- Does an estimation really converge?
- Does a subset of the data really contain (sufficiently many) observations?
- Does a file really exist?
- Do the explanatory variables really have the necessary properties?

\[
\text{if} (...) \text{ stop("...informative error message...")}
\]

If we don’t stop with an informative error,

- \text{R} will stop with an obscure error, or
- we will get wrong results (and we might not notice).

3.3 Functions

3.3.1 Functions increase robustness

\# script1.R
source("script2.R")
load("someData.Rdata")
myFunction(a,b)

\# script2.R
\# defines myFunction
myFunction <- function(y,x) {
 est <<- lm (y ~ x)
}

Now \texttt{script2.R} only defines a function. The function has arguments, hence, when we use it in \texttt{script1.R} we realise which variable goes where.

Note that the function takes \textit{arguments}. This is more elegant (and less risky) than writing functions like this one:

\# script2.R
\# defines myFunction
myFunction <- function() {
 est <<- lm (y ~ x)
}

and then say
It will still work, but later it will be less clear to us that the assignments before the function call are essential for the function.

```
myFunction <- function(y,x) {
  est <<- lm ( y ~ x)
}
```

This function has a *side effect*. It changes a variable `est` outside the function. Often it is less confusing to define functions with *return values* and no side effects.

```
myFunction <- function(y,x) {
  lm ( y ~ x)
}
```

When we call this function later as

```
est <- myFunction(y,x)
```

it is clear where the result of the function goes.

Recap

- Functions which use *global variables*: risky
- Functions with *side effects*: risky
- Functions which only use arguments and return values: often better

Note: If we use *scripts* instead of *functions*:

- Scripts must use *global variables* and can only produce *side effects*.
- Scripts are more likely to lead to *mistakes* than functions.
- Replace scripts by *functions* (with arguments) whenever possible.

3.4 Calculations that take a lot of time

If a sequence of functions takes a lot of time to run, let it generate intermediate data. Our master-R-file could look like this:
set.seed(123)
...
source("projectXYZ_init_180715.R")
getAndCleanData() # takes a lot of time
save(cleanedData, file="cleanedData180715.Rdata")

load("cleanedData180715.Rdata")
doBootstrap() # takes a lot of time
save(bsData, file="bsData180715.Rdata")

load("cleanedData180715.Rdata")
load("bsData180715.Rdata")
doFigures()
...

3.5 Nested functions

If our functions become long and complicated, we can divide them into small chunks.

...
doAnalysis <- function () {
 firstStepAnalysis()
 secondStepAnalysis()
 thirdStepAnalysis()
}

firstStepAnalysis <- function () {
 ...
}

secondStepAnalysis <- function () {
 ...
}

...

Actually, if we need some functions only within a specific other function then we can define them within this function:

...
doAnalysis <- function () {
 firstStep <- function () {
 ...
 }
 secondStep <- function () {
 ...
 }
 firstStep()
 secondStep()
 thirdStep()
 ...
}
• Advantage: These functions are only visible from within doAnalysis and can do no harm elsewhere (where we, perhaps, defined functions with the same name that do different things).

Nesting of functions has three advantages:
• It structures our work.
• It facilitates debugging.
• It facilitates communication with coauthors. (we can say: “...there is a problem in thirdStep in doAnalysis...”)

3.6 Reproducible randomness

```
set.seed(123)
```

Random numbers affect our results:
• Simulation
• MCMC samples
• Bootstrapping
• Approximate permutation tests
• Selection of training and confirmation samples
• ...

3.7 Recap — writing scripts and using functions

• If there is a systematic structure in our problem, then we can exploit it
• If we make mistakes, we make them systematically!

```
N <- 100
profit88 <- rnorm(N)
profit89 <- rnorm(N)
profit98 <- rnorm(N)
myData <- data.frame(profit88,profit89,profit98)

Compare

t.test(profit88, data=myData)$p.value
t.test(profit89, data=myData)$p.value
t.test(profit98, data=myData)$p.value
```

with
The first looks simpler. The second is more robust against

- a change in the dataset (instead of `myData` we now use `myDataClean`)
- a change in the names of the variables (`profit` becomes `Profit_`)
- adding another `profit`-variable (`profit2016`...)
- typos (use `profit88` twice, instead of `profit88` and `profit89` once each.

3.8 Human readable scripts

- Weaving and knitting → we do this later
- Comments at the beginning of each file

```r
# scriptExample180715.R
# the purpose of this script is to illustrate the use of
# comments
# first version: 180715
# this version: 180715
# last change by: Oliver
# requires: test180715.Rdata, someFunctions180715.R
# provides: ...
#
set.seed(123)
```

- Comments at the beginning of each function

```r
# exampleFun transforms two vectors into an example
# side effects: ...
# returns: ...
# exampleFun <- function(x,y) {
# ...
}
```

- Comment non-obvious steps

```r
# to detect outliers we use lrt-method.
# We have tried depth.trim and depth.pond
# but they produce implausible results...
outl <- foutliers(data, method="lrt")
```
• Document your thoughts in your comments

```r
# 18/07/21: although I thought that age should not affect
# profits, it does here! I also checked
# xyz-specification and it still does.
# Perhaps age is a proxy for income.
# Unfortunately we do not have data on
# income here.
```

• Formatting

Compare

```r
lm ( s1 ~ trust + ineq + sex + age + latitude )
lm ( otherinvestment ~ trust + ineq + sex + age + latitude )
```

with

```r
lm ( s1 ~ trust + ineq + sex + age + latitude )
lm ( otherinvestment ~ trust + ineq + sex + age + latitude )
```

Insert linebreaks Compare

```r
lm ( otherinvestment ~ trust + ineq + sex + age + latitude, data=trustExp, subset=sex=="female"
with

```r
lm (otherinvestment ~ trust + ineq + sex + age + latitude, data=trustExp,
subset=sex=="female")
```

• Variables names

short but not too short

```r
lm (otherinvestment ~ trustworthiness + inequalityversion + sexOfProposer + ageOfProposer
lm (otherinvestment ~ trust + ineq + sex + age + latitude)
lm (oi ~ t + i + s + a + l1 + l2)
lm (R100234 ~ R100412 + R100017 + R100178 + R100671 + R100229)
```

We will say more about variable names in section 6.3.

• Abbreviations in scripts

R (and other languages too) allows you to refer to parameters in functions with names:
To save space, we can abbreviate these names:

\[
\text{qnorm}(p = 0.01, \text{lower.tail}=\text{FALSE}) \Rightarrow 2.326348
\]

4 Some programming techniques

4.1 Debugging functions

```r
library(Ecdat)
data(Kakadu)
head(Kakadu)
```

```
lower upper answer recparks jobs lowrisk wildlife future aboriginal finben
1 0 2 nn 3 1 5 5 1 1 1
mineparks moreparks gov envcon vparks tvenv conservation sex age schooling
1 4 5 1 yes yes 1 no male 27 3
income major
1 25 no
```

[reached getOption("max.print") -- omitted 5 rows]

general strategies: debug the function with a simple example

```r
sqMean <- function (x) {
 z <- mean(x)
 z^2
}
sqMean(Kakadu$lower)
```

```
[1] 2361.471
```

Is this correct? Take a (simpler) subsample of the data:

```r
(xx <- sample(Kakadu$lower, 3))
```

```
[1] 100 0 20
```

```r
sqMean(xx)
```

```
[1] 1600
```
Assume that we still do not trust the function. `debug` allows us to debug a function. `ls` allows us to list the variables in the current environment.

```r
debug(sqMean)

sqMean(xx)

debugging in: sqMean(xx)
debug at <text>#1: {
 z <- mean(x)
 z^2
}
debug at <text>#2: z <- mean(x)
debug at <text>#3: z^2
exiting from: sqMean(xx)
[1] 1600

undepug(sqMean)
```

If the function returns with an error, it helps to set

```r
options(error=recover)
```

In the following function we refer to the variable `xxx` which is not defined. The function will, hence, fail. With `options(error=recover)` we can inspect the function at the time of the failure.

```r
sqMean <- function (x) {
 z <- mean(xxx)
 z^2
}

sqMean(xx)
```

```
Error in mean(xxx) (from #2) : object 'xxx' not found
Enter a frame number, or 0 to exit
1: sqMean(xx)
2: #2: mean(xxx)

Selection: 1
Called from: top level
Browse[1]> xxx
Error during wrapup: object 'xxx' not found
Browse[1]> x
[1] 20 0 0 250 100 50 20 50 50 100
Browse[1]> Q
```
4.2 Lists of variables

To make the analysis more consistent.
Whenever things repeat, we define them in variables at the top of the paper:

```r
models <- list(a="income",
 b="income + age + sex",
 c="income + age + sex + conservation + vparks")
```

(We use here character strings to represent parts of formulas. Alternatively, we could also store objects of class `formula`. However, manipulating these objects is not always to obvious. To keep things simple, we will use character strings here.) Later in the paper we compare the different models:

```r
mylm <- function (m) lm(paste("as.integer(answer) ~ ",m),data=Kakadu)
lmList<-lapply(models,mylm)
class(lmList)<-c("list","by")
mtable(lmList)
```

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Intercept)</td>
<td>2.122***</td>
<td>2.765***</td>
<td>2.648***</td>
</tr>
<tr>
<td></td>
<td>(0.035)</td>
<td>(0.065)</td>
<td>(0.076)</td>
</tr>
<tr>
<td>income</td>
<td>0.003*</td>
<td>0.003*</td>
<td>0.002</td>
</tr>
<tr>
<td></td>
<td>(0.001)</td>
<td>(0.001)</td>
<td>(0.001)</td>
</tr>
<tr>
<td>age</td>
<td>-0.013***</td>
<td>-0.012***</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.001)</td>
<td>(0.001)</td>
<td></td>
</tr>
<tr>
<td>sex: male/female</td>
<td>-0.196***</td>
<td>-0.190***</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.043)</td>
<td>(0.043)</td>
<td></td>
</tr>
<tr>
<td>conservation: yes/no</td>
<td>0.215**</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.083)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>vparks: yes/no</td>
<td>0.120*</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.047)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R-squared</td>
<td>0.0</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>adj. R-squared</td>
<td>0.0</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>sigma</td>
<td>0.9</td>
<td>0.9</td>
<td>0.9</td>
</tr>
<tr>
<td>F</td>
<td>4.7</td>
<td>47.6</td>
<td>31.7</td>
</tr>
<tr>
<td>p</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Log-likelihood</td>
<td>-2402.8</td>
<td>-2336.2</td>
<td>-2328.8</td>
</tr>
<tr>
<td>Deviance</td>
<td>1484.5</td>
<td>1380.1</td>
<td>1369.1</td>
</tr>
<tr>
<td>AIC</td>
<td>4811.5</td>
<td>4682.3</td>
<td>4671.7</td>
</tr>
<tr>
<td>BIC</td>
<td>4828.0</td>
<td>4709.9</td>
<td>4710.3</td>
</tr>
<tr>
<td>N</td>
<td>1827</td>
<td>1827</td>
<td>1827</td>
</tr>
</tbody>
</table>

Now we use the same explanatory variables to explain a different dependent variable:
mylogit <- function(m) glm(paste("answer=='yy' ~ ",m),
                   data=Kakadu,family=binomial(link=logit))
logitList <- lapply(models,mylogit)
class(logitList)<-c("list","by")
mtable(logitList)

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Intercept)</td>
<td>-0.121</td>
<td>1.100***</td>
<td>0.796***</td>
</tr>
<tr>
<td></td>
<td>(0.078)</td>
<td>(0.155)</td>
<td>(0.181)</td>
</tr>
<tr>
<td>income</td>
<td>0.008**</td>
<td>0.009**</td>
<td>0.008*</td>
</tr>
<tr>
<td></td>
<td>(0.003)</td>
<td>(0.003)</td>
<td>(0.003)</td>
</tr>
<tr>
<td>age</td>
<td>-0.025***</td>
<td>-0.023***</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.003)</td>
<td>(0.003)</td>
<td></td>
</tr>
<tr>
<td>sex: male/female</td>
<td>-0.343***</td>
<td>-0.332**</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.102)</td>
<td>(0.102)</td>
<td></td>
</tr>
<tr>
<td>conservation: yes/no</td>
<td>0.345</td>
<td>(0.202)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0.110)</td>
</tr>
<tr>
<td>vpark: yes/no</td>
<td>0.334**</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aldrich-Nelson R-sq.</td>
<td>0.0</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>McFadden R-sq.</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Cox-Snell R-sq.</td>
<td>0.0</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Nagelkerke R-sq.</td>
<td>0.0</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>phi</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>Likelihood-ratio</td>
<td>8.5</td>
<td>97.6</td>
<td>110.8</td>
</tr>
<tr>
<td>p</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Log-likelihood</td>
<td>-1261.3</td>
<td>-1216.7</td>
<td>-1210.2</td>
</tr>
<tr>
<td>Deviance</td>
<td>2522.6</td>
<td>2433.5</td>
<td>2420.3</td>
</tr>
<tr>
<td>AIC</td>
<td>2526.6</td>
<td>2441.5</td>
<td>2432.3</td>
</tr>
<tr>
<td>BIC</td>
<td>2537.6</td>
<td>2463.5</td>
<td>2465.4</td>
</tr>
<tr>
<td>N</td>
<td>1827</td>
<td>1827</td>
<td>1827</td>
</tr>
</tbody>
</table>

Similarly, we might define at the beginning of the paper...

- lists of random effects
- lists of variables to group by
- palettes for plots

### 4.3 Return values of functions

Most functions do not only return a number (or a vector) but rather complex objects. In R `str()` helps us to learn more about the structure of these objects. (In Stata similar return values are provided by `return`, `ereturn`, and `sreturn`.)
\texttt{lm1 <- mylm(models[[1]])}

\texttt{str(lm1)}

List of 12
$coefficients: Named num [1:2] 2.12202 0.00278
  ..- attr(*, "names")= chr [1:2] "(Intercept)" "income"
$residuals : Named num [1:1827] -1.19 -1.15 -1.19 -1.19 -1.22 ...
  ..- attr(*, "names")= chr [1:1827] "1" "2" "3" "4" ...
$effects : Named num [1:1827] -93.28 1.95 -1.17 -1.17 -1.21 ...
  ..- attr(*, "names")= chr [1:1827] "(Intercept)" "income" "" ""
$rank : int 2
$fitted.values: Named num [1:1827] 2.19 2.15 2.19 2.19 2.22 ...
  ..- attr(*, "names")= chr [1:1827] "1" "2" "3" "4" ...
$assign : int [1:2] 0 1
$qr : List of 5
  ..$qr : num [1:1827, 1:2] -42.7434 0.0234 0.0234 0.0234 0.0234 ...
  .....- attr(*, "dimnames")=List of 2
  ..... ..$ : chr [1:1827] "1" "2" "3" "4" ...
  ..... ..$ : chr [1:2] "(Intercept)" "income"
  .....- attr(*, "assign")= int [1:2] 0 1
  ..$qr aux : num [1:2] 1.02 1.02
  ..$ pivot: int [1:2] 1 2
  ..$ tol : num 0.0000001
  ..$ rank : int 2
  .....- attr(*, "class")= chr "qr"
$df.residual : int 1825
$xlevels : Named list()
$call : language \texttt{lm(formula = paste("as.integer(answer) ~ ", m), data = Kakadu)}
$terms :Classes 'terms', 'formula' language \texttt{as.integer(answer) ~ income}
  .....- attr(*, "variables")= language list(as.integer(answer), income)
  .....- attr(*, "factors")= int [1:2, 1] 0 1
  .....- attr(*, "dimnames")=List of 2
  ..... .....$ : chr [1:2] "as.integer(answer)" "income"
  ..... .....$ : chr "income"
  .....- attr(*, "term.labels")= chr "income"
  .....- attr(*, "assign")= int 1
  .....- attr(*, "order")= int 1
  .....- attr(*, "response")= int 1
  .....- attr(*, "Environment")=\texttt{<environment: 0x55fccc1326398>}
  .....- attr(*, "predvars")= language list(as.integer(answer), income)
  .....- attr(*, "dataClasses")= Named chr [1:2] "numeric" "numeric"
  .....- attr(*, "names")= chr [1:2] "as.integer(answer)" "income"
$model :	exttt{data.frame': 1827 obs. of 2 variables:}
  ..$ as.integer(answer): int [1:1827] 1 1 1 1 1 1 1 1 1 1 ...
There are at least two ways to extract data from these objects:

- Extractor functions

```r
coef(lm1)

(Intercept) income
2.122018102 0.002781938
```

```r
vcov(lm1)

 (Intercept) income
(Intercept) 0.00121806075 -0.000035685812
income -0.000035685812 0.000001647787
```

```r
hccm(lm1)

 (Intercept) income
(Intercept) 0.00123366056 -0.000036812592
income -0.000036812592 0.000001719666
```

```r
logLik(lm1)

'log Lik.' -2402.751 (df=3)
```

```r
effects(lm1)
fitted.values(lm1)
residuals(lm1)
```

(the equivalent in Stata are postestimation commands)

- Whatever is a list item can also be accessed directly:

```r
lm1$coefficients
lm1$residuals
lm1$fitted.values
lm1$residuals
```

Note: Some interesting values are not provided by the `lm`-object itself. These can often be accessed as part of the `summary-object`. 
4.4 Repeating things

Looping    The simplest way to repeat a command is a loop:

```r
for (i in 1:10) print(i)

[1] 1
[1] 2
[1] 3
[1] 4
[1] 5
[1] 6
[1] 7
[1] 8
[1] 9
[1] 10
```

If the command is a sequence of expressions, we have to enclose it in braces.

```r
for (i in 1:10) {
 x <- runif(i)
 print(mean(x))
}

[1] 0.3565607
[1] 0.9663778
[1] 0.5063639
[1] 0.4378409
[1] 0.487012
[1] 0.5853594
[1] 0.3502112
[1] 0.499148
[1] 0.5078825
[1] 0.4557163
```

Avoiding loops   In R loops should be avoided. It is more efficient (faster) to apply a function to a vector.

```r
sapply(1:10, print)

[1] 1
[1] 2
[1] 3
[1] 4
```
Or, the more complex example:

```r
sapply(1:10, function(i) {
 x <- runif(i)
 mean(x)
})
```

```
[1] 0.6538133 0.4623162 0.8092458 0.4935831 0.6997635 0.4856793 0.6413399
 0.5610393 0.5781580 0.4712342
```

Note that `sapply` already returns a vector which is in many cases what we want anyway.

In the above examples we applied a function to a vector. Sometimes we want to apply functions to a matrix.

### Applying a function along one dimension of a matrix

In the following example we apply a function along the second dimension of the dataset `Kakadu`.

```r
apply(Kakadu, 2, function(x) mean(as.integer(x)))
```

```
 lower upper answer recparks jobs lowrisk
lower 48.594964 536.714286 NA 3.688560 2.592228 2.790367
wildlife 4.739464 4.466886 3.569787 2.915709 3.643678 3.864806
 gov envcon v parks tvenv conservation sex
age 1.083196 NA NA 1.785441 NA NA
income 42.968254 3.683634 21.656814 NA NA
```

```r
xtable(cbind(mean=apply(Kakadu, 2, function(x)
 mean(as.integer(x))))
```
<table>
<thead>
<tr>
<th></th>
<th>mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>lower</td>
<td>48.59</td>
</tr>
<tr>
<td>upper</td>
<td>536.71</td>
</tr>
<tr>
<td>answer</td>
<td></td>
</tr>
<tr>
<td>recparks</td>
<td>3.69</td>
</tr>
<tr>
<td>jobs</td>
<td>2.59</td>
</tr>
<tr>
<td>lowrisk</td>
<td>2.79</td>
</tr>
<tr>
<td>wildlife</td>
<td>4.74</td>
</tr>
<tr>
<td>future</td>
<td>4.47</td>
</tr>
<tr>
<td>aboriginal</td>
<td>3.57</td>
</tr>
<tr>
<td>finben</td>
<td>2.92</td>
</tr>
<tr>
<td>mineparks</td>
<td>3.64</td>
</tr>
<tr>
<td>moreparks</td>
<td>3.86</td>
</tr>
<tr>
<td>gov</td>
<td>1.08</td>
</tr>
<tr>
<td>envcon</td>
<td></td>
</tr>
<tr>
<td>vparks</td>
<td></td>
</tr>
<tr>
<td>tvenv</td>
<td>1.79</td>
</tr>
<tr>
<td>conservation</td>
<td></td>
</tr>
<tr>
<td>sex</td>
<td></td>
</tr>
<tr>
<td>age</td>
<td>42.97</td>
</tr>
<tr>
<td>schooling</td>
<td>3.68</td>
</tr>
<tr>
<td>income</td>
<td>21.66</td>
</tr>
<tr>
<td>major</td>
<td></td>
</tr>
</tbody>
</table>

**Rectangular and ragged arrays**  
Rectangular array:

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>B</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>hor</th>
<th>vert</th>
<th>x</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>A</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>b</td>
<td>A</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>c</td>
<td>A</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

Ragged array:

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>4</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>hor</th>
<th>vert</th>
<th>x</th>
</tr>
</thead>
<tbody>
<tr>
<td>b</td>
<td>A</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>c</td>
<td>A</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>a</td>
<td>B</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>b</td>
<td>B</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>
Applying a function to each element of a ragged array  In R ragged arrays can be represented as datasets grouped by one or more factors. These variables describe which records belong together (e.g. to the same person, year, firm,...)

In the following example we use the dataset Fatality. This dataset contains for each state of the United States and for each year in 1982 to 1988 in mral all the traffic fatality rate (deaths per 10000).

```r
data(Fatality)
head(Fatality)

 state year mral beertax mlda jaild comserd vmiles unrate perinc
1 1 1982 2.12836 1.539379 no no 7.233887 14.4 10544.15
2 1 1983 2.34848 1.788991 no no 7.836348 13.7 10732.80
3 1 1984 2.33643 1.714286 no no 8.262990 11.1 11108.79
4 1 1985 2.19348 1.652542 no no 8.726917 8.9 11332.63
[reached getOption("max.print") -- omitted 2 rows]

by(Fatality,list(Fatality$year),function(x) mean(x$mral))

: 1982
[1] 2.089106

: 1983
[1] 2.007846

: 1984
[1] 2.017122

: 1985
[1] 1.973671

: 1986
[1] 2.065071

: 1987
[1] 2.060696

: 1988
[1] 2.069594

by(Fatality,list(Fatality$state),function(x) mean(x$mral))

: 1
[1] 2.412627

: 4
[1] 2.7059

: 5
```


<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>2.435336</td>
</tr>
<tr>
<td>8</td>
<td>1.904977</td>
</tr>
<tr>
<td>9</td>
<td>1.866981</td>
</tr>
<tr>
<td>10</td>
<td>2.068231</td>
</tr>
<tr>
<td>12</td>
<td>2.477799</td>
</tr>
<tr>
<td>13</td>
<td>2.401569</td>
</tr>
<tr>
<td>16</td>
<td>2.571667</td>
</tr>
<tr>
<td>17</td>
<td>1.405084</td>
</tr>
<tr>
<td>18</td>
<td>1.834221</td>
</tr>
<tr>
<td>19</td>
<td>1.679544</td>
</tr>
<tr>
<td>20</td>
<td>1.969664</td>
</tr>
<tr>
<td>21</td>
<td>2.133043</td>
</tr>
<tr>
<td>22</td>
<td>2.120829</td>
</tr>
<tr>
<td>23</td>
<td>1.87013</td>
</tr>
<tr>
<td>24</td>
<td>1.629377</td>
</tr>
<tr>
<td>25</td>
<td>1.199393</td>
</tr>
<tr>
<td>26</td>
<td>1.672087</td>
</tr>
</tbody>
</table>
by does not return a vector but an object of class by. If we actually need a vector we have to use c and sapply.

In the following example we let by actually return two values.

byObj <- by(Fatality,list(Fatality$year),
  function(x) c(year=median(x$year),
  fatality=mean(x$mrall),
  meanbeertax=mean(x$beertax)))
sapply(byObj,c)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>fatality</td>
<td>2.0891059</td>
<td>2.007846</td>
<td>2.0171225</td>
<td>1.9736708</td>
<td>2.0650710</td>
</tr>
<tr>
<td>meanbeertax</td>
<td>0.5302734</td>
<td>0.532393</td>
<td>0.5295902</td>
<td>0.5169272</td>
<td>0.5086639</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>year</th>
<th>1987</th>
<th>1988</th>
</tr>
</thead>
<tbody>
<tr>
<td>fatality</td>
<td>2.0606956</td>
<td>2.0695941</td>
</tr>
<tr>
<td>meanbeertax</td>
<td>0.4951288</td>
<td>0.4798154</td>
</tr>
</tbody>
</table>
We can do more complicated things in by. In the following example we estimate a regression. To get only the coefficients from the regression (and not fitted values, residuals, etc.) we use the extractor function `coef`.

```r
byObj <- by(Fatality, list(Fatality$year), function(x)
 lm(mrall ~ beertax + jaild, data=x))
sapply(byObj, coef)
```

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(Intercept)</td>
<td>1.9079924</td>
<td>1.7503870</td>
<td>1.6768093</td>
<td>1.6567128</td>
<td>1.7108657</td>
<td>1.7188081</td>
</tr>
<tr>
<td>beertax</td>
<td>0.1824028</td>
<td>0.2991742</td>
<td>0.4066922</td>
<td>0.4057889</td>
<td>0.4944595</td>
<td>0.4920275</td>
</tr>
<tr>
<td>jaildyes</td>
<td>0.4500807</td>
<td>0.3625151</td>
<td>0.4283417</td>
<td>0.3430232</td>
<td>0.3286131</td>
<td>0.3369277</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>1988</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Intercept)</td>
<td>1.7411593</td>
</tr>
<tr>
<td>beertax</td>
<td>0.4509099</td>
</tr>
<tr>
<td>jaildyes</td>
<td>0.3842788</td>
</tr>
</tbody>
</table>

```r
xx <- data.frame(t(sapply(byObj, coef)))
xyplot(beertax ~ jaildyes, type="l", data=xx) +
 layer(with(xx, panel.text(label=rownames(xx), y=beertax, x=jaildyes, adj=c(1,1))))
```
by is very complex. It offers the entire subset of the dataframe, as defined by the index variable, to the function.

Sometimes we want simply to apply a function of only a vector along a ragged array.

```r
with(Fatality, aggregate(mrall~year, FUN=mean))
```

<table>
<thead>
<tr>
<th>year</th>
<th>mrall</th>
</tr>
</thead>
<tbody>
<tr>
<td>1982</td>
<td>2.089106</td>
</tr>
<tr>
<td>1983</td>
<td>2.007846</td>
</tr>
<tr>
<td>1984</td>
<td>2.017122</td>
</tr>
<tr>
<td>1985</td>
<td>1.973671</td>
</tr>
<tr>
<td>1986</td>
<td>2.065071</td>
</tr>
<tr>
<td>1987</td>
<td>2.060696</td>
</tr>
<tr>
<td>1988</td>
<td>2.069594</td>
</tr>
</tbody>
</table>

Again, the function (which was mean in the previous example) can be defined by us:

```r
with(Fatality, aggregate(mrall~year, FUN=function(x) sd(x)/mean(x)))
```

<table>
<thead>
<tr>
<th>year</th>
<th>mrall</th>
</tr>
</thead>
<tbody>
<tr>
<td>1982</td>
<td>0.3196449</td>
</tr>
<tr>
<td>1983</td>
<td>0.3017002</td>
</tr>
<tr>
<td>1984</td>
<td>0.2721300</td>
</tr>
<tr>
<td>1985</td>
<td>0.2726437</td>
</tr>
<tr>
<td>1986</td>
<td>0.2709500</td>
</tr>
<tr>
<td>1987</td>
<td>0.2738153</td>
</tr>
<tr>
<td>1988</td>
<td>0.2518286</td>
</tr>
</tbody>
</table>
5  Data manipulation

5.1 Subsetting data

There are several ways to access only a part of a dataset:

- Many functions take an option ...,subset=...

\[
\text{lm}(\text{mrall} \sim \text{beertax} + \text{jaild}, \text{data}=\text{Fatality}, \text{subset} = \text{year} == 1982)
\]

Call:
\[
\text{lm}(\text{formula} = \text{mrall} \sim \text{beertax} + \text{jaild}, \text{data} = \text{Fatality}, \text{subset} = \text{year} == 1982)
\]

Coefficients:
(Intercept) beertax jaildyes
1.9080 0.1824 0.4501

- The subset() function

\[
\text{subset}(\text{Fatality}, \text{year} == 1982)
\]

\[
\begin{array}{ccccccccccc}
\text{state} & \text{year} & \text{mrall} & \text{beertax} & \text{mlda} & \text{jaild} & \text{comserd} & \text{vmiles} & \text{unrate} & \text{perinc} \\
1 & 1 & 1982 & 2.12836 & 1.5397948 & 19.0 & no & no & 7.233887 & 14.4 & 10544.152 \\
8 & 4 & 1982 & 2.49914 & 0.21479714 & 19.0 & yes & yes & 6.810157 & 9.9 & 12309.069 \\
15 & 5 & 1982 & 2.38405 & 0.65035802 & 21.0 & no & no & 7.208500 & 9.8 & 10267.303 \\
22 & 6 & 1982 & 1.86194 & 0.10739857 & 21.0 & no & no & 6.858677 & 9.9 & 15797.136 \\
\end{array}
\]

[ reached getOption("max.print") -- omitted 44 rows ]

\[
\text{with}(\text{subset}(\text{Fatality}, \text{year} == 1982), \text{lm}(\text{mrall} \sim \text{beertax} + \text{jaild}))
\]

Call:
\[
\text{lm}(\text{formula} = \text{mrall} \sim \text{beertax} + \text{jaild})
\]

Coefficients:
(Intercept) beertax jaildyes
1.9080 0.1824 0.4501

- The first index of the dataset

\[
\text{Fatality}[\text{Fatality}\$\text{year}==1982,]
\]

\[
\begin{array}{ccccccccccc}
\text{state} & \text{year} & \text{mrall} & \text{beertax} & \text{mlda} & \text{jaild} & \text{comserd} & \text{vmiles} & \text{unrate} & \text{perinc} \\
1 & 1 & 1982 & 2.12836 & 1.5397948 & 19.0 & no & no & 7.233887 & 14.4 & 10544.152 \\
8 & 4 & 1982 & 2.49914 & 0.21479714 & 19.0 & yes & yes & 6.810157 & 9.9 & 12309.069 \\
15 & 5 & 1982 & 2.38405 & 0.65035802 & 21.0 & no & no & 7.208500 & 9.8 & 10267.303 \\
22 & 6 & 1982 & 1.86194 & 0.10739857 & 21.0 & no & no & 6.858677 & 9.9 & 15797.136 \\
\end{array}
\]

[ reached getOption("max.print") -- omitted 44 rows ]
with(Fatality[ Fatality$year==1982 , ]), lm(mrall ~ beertax + jaild))

Call:
lm(formula = mrall ~ beertax + jaild)

Coefficients:
(Intercept) beertax jaildyes
 1.9080 0.1824 0.4501

5.2 Merging data

- Appending two datasets

```r
library(plyr)
rbind.fill(x,y)
```

(In Stata this is done by `append`)

- Matching two datasets (inner join)

```r
merge(x,y)
```

(In Stata this is done by `merge`)

- Joining two datasets (left join)

```r
merge(x,y,all.x=TRUE)
```

(In Stata this is done by `joinby`)

<table>
<thead>
<tr>
<th>Dataset A</th>
<th>Dataset B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Name</td>
</tr>
<tr>
<td>Grade</td>
<td>eMail</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Eva</td>
<td>Eva</td>
</tr>
<tr>
<td>2.0</td>
<td>eva@...</td>
</tr>
<tr>
<td>Mary</td>
<td>Eva</td>
</tr>
<tr>
<td>1.0</td>
<td>eva2@...</td>
</tr>
<tr>
<td>Mike</td>
<td>Susan</td>
</tr>
<tr>
<td>3.0</td>
<td>susan@...</td>
</tr>
<tr>
<td></td>
<td>Mike</td>
</tr>
<tr>
<td></td>
<td>mike@...</td>
</tr>
</tbody>
</table>

Inner join: `merge(A,B)`

<table>
<thead>
<tr>
<th>Name</th>
<th>Grade</th>
<th>eMail</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eva</td>
<td>2.0</td>
<td>eva@...</td>
</tr>
<tr>
<td>Eva</td>
<td>2.0</td>
<td>eva2@...</td>
</tr>
<tr>
<td>Mike</td>
<td>3.0</td>
<td>mike@...</td>
</tr>
</tbody>
</table>

Left join: `merge(A,B,all.x=TRUE)`

<table>
<thead>
<tr>
<th>Name</th>
<th>Grade</th>
<th>eMail</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eva</td>
<td>2.0</td>
<td>eva@...</td>
</tr>
<tr>
<td>Eva</td>
<td>2.0</td>
<td>eva2@...</td>
</tr>
<tr>
<td>Mary</td>
<td>1.0</td>
<td>NA</td>
</tr>
<tr>
<td>Mike</td>
<td>3.0</td>
<td>mike@...</td>
</tr>
</tbody>
</table>
Appending

In the following example we first split the data from an experiment into two parts. Merge helps us to append them to each other.

```r
load("data/180716_060x.Rdata")
experiment1 <- subset(trustGS$subjects, Date=="180716_0601")
experiment2 <- subset(trustGS$subjects, Date=="180716_0602")
dim(experiment1)
[1] 108 14

dim(experiment2)
[1] 108 14

library(plyr)
dim(rbind.fill(experiment1, experiment2))
[1] 216 14
```

Joining

A frequent application for a join are tables in z-Tree that have something to do with each other. E.g. the globals and the subjects tables both provide information about each period. Common variables in these tables are Date, Treatment, and Period.

By merging globals with subjects, merge looks up for each record in the subjects table the matching record in the globals table and adds the variables which are not already present in subjects.

```r
head(trustGS$global)
 Date Treatment Period NumPeriods RepeatTreatment
1 180716_0601 1 1 6 0
2 180716_0601 1 2 6 0
3 180716_0601 1 3 6 0
4 180716_0601 1 4 6 0
5 180716_0601 1 5 6 0
6 180716_0601 1 6 6 0

head(trustGS$subject)
 Date Treatment Period Subject Pos Group Offer Receive Return
1 180716_0601 1 1 1 2 1.000 1.5300 0.585990
2 180716_0601 1 1 2 2 1.000 1.6740 1.131624
 GetBack country siblings sex age
1 0.000000 6 1 1 27
2 0.000000 15 3 1 19
[reached getOption("max.print") -- omitted 4 rows]
```

In the following example we simply get two more variables in the dataset (NumPeriods and RepeatTreatment). With more variables in globals we would, of course, also get more variables in the merged dataset.
Joining aggregates  A common application for a join is a comparison of our individual data with aggregated data. Let us come back to the Fatalities example. We want to compare the traffic fatality rate mrall for each state with the average values for each year.

```r
head(Fatality)
```

```
state year mrall beertax mlda jaild comserd vmiles unrate perinc
1 1 1982 2.12836 1.539379 19.00 no no 7.233887 14.4 10544.15
2 1 1983 2.34848 1.788991 19.00 no no 7.836348 13.7 10732.80
3 1 1984 2.33643 1.714286 19.00 no no 8.262990 11.1 11108.79
4 1 1985 2.19348 1.652542 19.67 no no 8.726917 8.9 11332.63
```

```
[reached getOption("max.print") -- omitted 2 rows]
```

```r
aggregate(cbind(avgMrall=mrall) ~ year, data=Fatality, FUN=mean)
```

```
year avgMrall
1 1982 2.089106
2 1983 2.007846
3 1984 2.017122
4 1985 1.973671
5 1986 2.065071
6 1987 2.060686
7 1988 2.069594
```

```r
merge(Fatality, aggregate(cbind(avgMrall=mrall) ~ year, data=Fatality, FUN=mean))
```

```
year state mrall beertax mlda jaild comserd vmiles unrate perinc avgMrall
1 1982 1 2.12836 1.539379 19.00 no no 7.233887 14.4 2.089106
2 1982 30 3.15528 0.346447 19.00 yes no 8.284474 8.6 2.089106
3 1982 10 2.03333 0.173031 20.00 no no 7.651654 8.5 2.089106
```

merge has joined the two datasets, the large Fatality one, and the small aggregated one, on the variable year.
### 5.3 Reshaping data

Sometimes we have different observations of the same (or similar) variable in the same row (e.g. `profit.1` and `profit.2`), sometimes we have them stacked in one column (e.g. as `profit`). We call the first format *wide*, the second *long*.

For the *long* case we need a variable that distinguishes the different instances of this variable (e.g. `profit.1` and `profit.2`) from each other. In R such a variable is called *timevar* (Stata calls them *j*).

We also need one or more variables that tells us, which observations actually belonged to one row in the *wide* format. In R we call these variables *idvar* (Stata call these variables *i*).

Let us look at a part of our trust dataset

```r
trustLong <- trustGS$subjects[,c("Date","Period","Subject","Pos","Group","Offer")]
trustLong[1:4,]
```

<table>
<thead>
<tr>
<th>Date</th>
<th>Period</th>
<th>Subject</th>
<th>Pos</th>
<th>Group</th>
<th>Offer</th>
</tr>
</thead>
<tbody>
<tr>
<td>180716_0601</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>0.000</td>
</tr>
<tr>
<td>180716_0601</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>0.000</td>
</tr>
<tr>
<td>180716_0601</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>5</td>
<td>0.495</td>
</tr>
<tr>
<td>180716_0601</td>
<td>1</td>
<td>4</td>
<td>2</td>
<td>2</td>
<td>0.000</td>
</tr>
</tbody>
</table>

```r
trustWide <- reshape(trustLong,v.names=c("Offer","Subject"),
idvar=c("Date","Period","Group"),timevar="Pos",
direction="wide")
trustWide[1:4,]
```

<table>
<thead>
<tr>
<th>Date</th>
<th>Period</th>
<th>Group</th>
<th>Offer.2</th>
<th>Subject.2</th>
<th>Offer.1</th>
<th>Subject.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>180716_0601</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0.5100000</td>
<td>13</td>
</tr>
<tr>
<td>180716_0601</td>
<td>1</td>
<td>4</td>
<td>0</td>
<td>2</td>
<td>0.5580000</td>
<td>5</td>
</tr>
<tr>
<td>180716_0601</td>
<td>1</td>
<td>5</td>
<td>0</td>
<td>7</td>
<td>0.4950000</td>
<td>3</td>
</tr>
<tr>
<td>180716_0601</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>4</td>
<td>0.8422333</td>
<td>8</td>
</tr>
</tbody>
</table>

```r
reshape(trustWide,direction="long")[1:4,]
```

<table>
<thead>
<tr>
<th>Date</th>
<th>Period</th>
<th>Group</th>
<th>Pos</th>
<th>Offer</th>
<th>Subject</th>
</tr>
</thead>
<tbody>
<tr>
<td>180716_0601.1.1.2</td>
<td>180716_0601</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>180716_0601.1.4.2</td>
<td>180716_0601</td>
<td>1</td>
<td>4</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>180716_0601.1.5.2</td>
<td>180716_0601</td>
<td>1</td>
<td>5</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>180716_0601.1.2.2</td>
<td>180716_0601</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>0</td>
</tr>
</tbody>
</table>

↑ Reshaping back returns more or less the original data. The ordering has changed and rows have got names now.

```r
library(reshape2)
recast(trustLong, Date + Period + Group - Pos, measure.var=c("Offer"))
```
Reshaping with **reshape2** recast does not give us Subject, though.

### 5.4 More on functions

#### 5.4.1 Functional programming

Consider the following dataframe:

```r
wide <- reshape(Indometh, v.names = "conc", idvar = "Subject",
 timevar = "time", direction = "wide")
```

<table>
<thead>
<tr>
<th>Subject</th>
<th>conc.0.25</th>
<th>conc.0.5</th>
<th>conc.0.75</th>
<th>conc.1</th>
<th>conc.1.25</th>
<th>conc.2</th>
<th>conc.3</th>
<th>conc.4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1.50</td>
<td>0.94</td>
<td>0.78</td>
<td>0.48</td>
<td>0.37</td>
<td>0.19</td>
<td>0.12</td>
</tr>
<tr>
<td>12</td>
<td>2</td>
<td>2.03</td>
<td>1.63</td>
<td>0.71</td>
<td>0.70</td>
<td>0.64</td>
<td>0.36</td>
<td>0.32</td>
</tr>
<tr>
<td>23</td>
<td>3</td>
<td>2.72</td>
<td>1.49</td>
<td>1.16</td>
<td>0.80</td>
<td>0.80</td>
<td>0.39</td>
<td>0.22</td>
</tr>
<tr>
<td></td>
<td>conc.5</td>
<td>conc.6</td>
<td>conc.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0.08</td>
<td>0.07</td>
<td>0.05</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>0.25</td>
<td>0.12</td>
<td>0.08</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>0.11</td>
<td>0.08</td>
<td>0.08</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

Now assume that you consider all values of conc>1 invalid and you want to replace them with NA:

```r
within(wide,
{
  conc.0.25[conc.0.25>1]<-NA
  conc.0.5[conc.0.5>1]<-NA
  conc.0.75[conc.0.75>1]<-NA
  ...
}
```

This is clumsy and error prone. Instead:

```r
varnames <- grep("conc", names(wide))
cbind(wide[-varnames], data.frame(lapply(wide[, varnames],
  function(x) {x[x>1]<-NA;x})))
```
5.4.2 Closures

```r
power <- function(exponent)
  function(x) x^exponent

power(2)

function(x) x^exponent
<environment: 0x55fcc3a8c510>

square <- power(2)
sqroot <- power(1/2)
sqroot(16)

[1] 4

square(16)

[1] 256

as.list(environment(sqroot))

$exponent
[1] 0.5

as.list(environment(square))

$exponent
[1] 2
```

Functions keep the environment under which they are created. (So here they remember the exponent).

Here is an application of closures:

```r
set.seed(123)
x <- 1:5
y <- runif(5)
f <- splinefun(x, y)
f2 <- approxfun(x, y)
curve(f, from=1, to=5)
```
5.4.3 Chaining functions

Sometimes you want to apply functions of functions:

```r
x <- 1:10
var(x)

[1] 9.166667
```

```r
sqrt(var(x))

[1] 3.02765
```

So far this is trivial. Here is a more complicated example:

A deeply nested function can be hard to understand:

```r
library(plyr)
ddply(subset(mtcars,!is.na(am) & !is.na(cyl)),.(am,cyl),
summarize,disp=mean(disp),hp=mean(hp))
```

<table>
<thead>
<tr>
<th>am</th>
<th>cyl</th>
<th>disp</th>
<th>hp</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>4 135.8667</td>
<td>84.66667</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>6 204.5500</td>
<td>115.25000</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>8 357.6167</td>
<td>194.16667</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>4 93.6125</td>
<td>81.87500</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>6 155.0000</td>
<td>131.66667</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>8 326.0000</td>
<td>299.50000</td>
</tr>
</tbody>
</table>

We could store intermediate results in a variable (xx)

```r
xx<-subset(mtcars,!is.na(am) & !is.na(cyl))
ddply(xx,.(am,cyl),summarize,disp=mean(disp),hp=mean(hp))
```
6 Preparing Data

- read data
- check structure (names, dimension, labels)
- check values
- create new data:
 - recode variables
 - rename variables
 - label variables
 - eliminate outliers
 - reshape data
6.1 Reading data

6.1.1 Reading z-Tree Output

The function
\texttt{zTreeTables(...vector of filenames,...[,vector of tables])}
reads zTree .xls files and returns a list of tables. Here we use \texttt{list.files} to find all files that match the typical z-Tree pattern. If we ever get more experiments our command will find them and use them.

```
library(foreign)
library(readstata13)
library("zTree")

setwd("data/rawdata/Trust")
files <- list.files(pattern = "[0-9]{6}_[0-9]{4}.xls$", recursive=TRUE)
files

[1] "180716_0601.xls" "180716_0602.xls" "180716_0603.xls" "180716_0604.xls"

trustGS <- zTreeTables(files)

reading 180716_0601.xls ...
Skipping:
Doing: globals
Doing: subjects
*** 180716_0602.xls is file 2 / 4 ***
reading 180716_0602.xls ...
Skipping:
Doing: globals
Doing: subjects
*** 180716_0603.xls is file 3 / 4 ***
reading 180716_0603.xls ...
Skipping:
Doing: globals
Doing: subjects
*** 180716_0604.xls is file 4 / 4 ***
reading 180716_0604.xls ...
Skipping:
Doing: globals
Doing: subjects

save in R-format:

\texttt{save(trustGS,zTreeTables, file="180716_060x.Rdata")}

save in Stata-format:
```

save in Stata-13 format:

```r
save.dta13(xx,file="180716_060x.dta13")
```

save as csv:

```r
write.csv(xx,file="180716_060x.csv")
```

As long as we need only a single table, we can access, e.g. the subjects table with `$subjects`.

If we need, e.g. the `globals` table together with the `subjects` table, we can merge:

```r
with(trustGS,merge(globals,subjects))
```

6.1.2 Reading and writing R-Files

If we want to save one or more R objects in a file, we use `save`.

```r
save(trustGS,zTreeTables,file="data/180716_060x.Rdata")
```

To retrieve them, we use `load`.

```r
load("data/180716_060x.Rdata")
```

Advantages:

- Rdata is very compact, files are small.
- All attributes are saved together with the data.
- We can save functions together with data.
6.1.3 Reading Stata Files

<table>
<thead>
<tr>
<th>package</th>
<th>command</th>
<th>limitation</th>
<th>generates</th>
<th>attributes</th>
</tr>
</thead>
<tbody>
<tr>
<td>foreign</td>
<td>read.dta</td>
<td>Stata version 5-12</td>
<td>data.frame</td>
<td>data.frame</td>
</tr>
<tr>
<td>memisc</td>
<td>Stata.file</td>
<td>Stata version 5-12</td>
<td>Data set</td>
<td>variable</td>
</tr>
<tr>
<td>readstata13</td>
<td>read.dta13</td>
<td>Stata version 13+</td>
<td>data.frame</td>
<td>data.frame</td>
</tr>
<tr>
<td>haven</td>
<td>read_dta</td>
<td>Stata version 8+</td>
<td>tibble</td>
<td>variable</td>
</tr>
</tbody>
</table>

```r
library(foreign)
sta <- read.dta("data/180716_060x.dta")
```

```r
sta2 <- Stata.file("data/180716_060x.dta")
```

Stata attributes (formats, value labels, variable labels) are stored either with data.frame (foreign and readstata13) or variables.

```r
str(sta)
'data.frame': 432 obs. of 16 variables:
$ Date      : chr "180716_0601" "180716_0601" "180716_0601" "180716_0601" ...
$ Treatment : num 1 1 1 1 1 1 1 1 1 1 ...
$ Period    : num 1 1 1 1 1 1 1 1 1 1 ...
$ NumPeriods: num 6 6 6 6 6 6 6 6 6 6 ...
$ RepeatTreatment: num 0 0 0 0 0 0 0 0 0 0 ...
$ Subject   : num 1 2 3 4 5 6 7 8 9 10 ...
$ Pos       : num 2 2 1 2 1 1 2 1 2 2 ...
$ Group     : num 1 4 5 2 4 3 5 2 9 7 ...
$ Offer     : num 0 0 0.495 0 0.558 ...
$ Receive   : num 1.53 1.67 0 2.53 0 ...
$ Return    : num 0.586 1.132 0 1.471 0 ...
$ GetBack   : num 0 0 0.425 0 1.132 ...
$ country   : num 6 15 8 16 17 1 18 12 7 98 ...
$ siblings  : num 1 3 3 3 0 0 3 1 2 3 ...
$ sex       : num 1 1 1 99 1 2 2 2 2 2 ...
$ age       : num 27 19 18 28 30 21 25 17 20 99 ...
- attr(*, "dataloader")= chr "Written by R. "
- attr(*, "time.stamp")= chr ""
- attr(*, "formats")= chr "%11s" "%9.0g" "%9.0g" "%9.0g" ...
- attr(*, "types")= int 138 100 100 100 100 100 100 100 100 100 100 ...
- attr(*, "val.labels")= chr "" "" "" "" "" ...
- attr(*, "var.labels")= chr "Date" "Treatment" "Period" "NumPeriods" ...
- attr(*, "version")= int 7
```

The data frame created by Stata.file looks different:
str(sta2)

Formal class 'Stata.importer' [package "memisc"] with 5 slots
 ..@ .Data :List of 16
 ..$: Nmnl. item chr(0)
 ..$: Itvl. item num(0)
 ..$: Itvl. item num(0)
 ..@ data.spec:List of 8
 ..$ names : chr [1:16] "Date" "Treatment" "Period" "NumPeriods" ...
 ..$ types : raw [1:16] 0b ff ff ff ...
 ..$ nobs : int 432
 ..$ nvar : int 16
 ..$ vvar : int 16
 ..$ varlabs : Named chr [1:16] "Date" "Treatment" "Period" "NumPeriods" ...
 ..$ value.labels : Named chr(0)
 ..$ missing.values: NULL
 ..$ version.string: chr "Stata 7"
 ..@ ptr :<externalptr>
 ..- attr(*, "file.name")= chr "data/180716_060x.dta"
 ..@ document : chr(0)
 ..@ names : chr [1:16] "Date" "Treatment" "Period" "NumPeriods" ...

Also the attributes are different:

attributes(sta)

$datalabel
[1] "Written by R."

$timestamp
[1] ""

$names
[1] "Date" "Treatment" "Period" "NumPeriods"
[5] "RepeatTreatment" "Subject" "Pos" "Group"
[9] "Offer" "Receive" "Return" "GetBack"
[13] "country" "siblings" "sex" "age"
Stata.file stores variable labels as attributes of the variables:

```r
attributes(sta2)
```

```r
$ptr
<pointer: 0x55d57b6fe5f0>
attr("file.name")
[1] "data/180716_060x.dta"
```

```r
$document
character(0)
```

```r
$names
[1] "Date" "Treatment" "Period" "NumPeriods"
[5] "RepeatTreatment" "Subject" "Pos" "Group"
[9] "Offer" "Receive" "Return" "GetBack"
[13] "country" "siblings" "sex" "age"
```

```r
$data.spec
```

```r
$data.spec$names
[1] "Date" "Treatment" "Period" "NumPeriods"
[5] "RepeatTreatment" "Subject" "Pos" "Group"
[9] "Offer" "Receive" "Return" "GetBack"
[13] "country" "siblings" "sex" "age"
```
Within the `memisc` world you can obtain more information with `codebook`.

```r
codebook(sta2)
```

```output
Data 'Date'

Storage mode: character
Measurement: nominal

  Min:  180716_0601
  Max:  180716_0604

```
Treatment 'Treatment'

Storage mode: double
Measurement: interval

<table>
<thead>
<tr>
<th>Statistic</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>1.000</td>
</tr>
<tr>
<td>Variance</td>
<td>0.000</td>
</tr>
<tr>
<td>Skewness</td>
<td>NaN</td>
</tr>
<tr>
<td>Kurtosis</td>
<td>NaN</td>
</tr>
<tr>
<td>Min</td>
<td>1.000</td>
</tr>
<tr>
<td>Max</td>
<td>1.000</td>
</tr>
</tbody>
</table>

Period 'Period'

Storage mode: double
Measurement: interval

<table>
<thead>
<tr>
<th>Statistic</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>3.500</td>
</tr>
<tr>
<td>Variance</td>
<td>2.917</td>
</tr>
<tr>
<td>Skewness</td>
<td>0.000</td>
</tr>
<tr>
<td>Kurtosis</td>
<td>-1.269</td>
</tr>
<tr>
<td>Min</td>
<td>1.000</td>
</tr>
<tr>
<td>Max</td>
<td>6.000</td>
</tr>
</tbody>
</table>

NumPeriods 'NumPeriods'

Storage mode: double
Measurement: interval

<table>
<thead>
<tr>
<th>Statistic</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>6.000</td>
</tr>
<tr>
<td>Variance</td>
<td>0.000</td>
</tr>
<tr>
<td>Skewness</td>
<td>NaN</td>
</tr>
<tr>
<td>Kurtosis</td>
<td>NaN</td>
</tr>
<tr>
<td>Min</td>
<td>6.000</td>
</tr>
<tr>
<td>Max</td>
<td>6.000</td>
</tr>
</tbody>
</table>

RepeatTreatment 'RepeatTreatment'

Storage mode: double
Measurement: interval

Mean: 0.000
Variance: 0.000
Skewness: NaN
Kurtosis: NaN
Min: 0.000
Max: 0.000

Subject 'Subject'

Storage mode: double
Measurement: interval

Mean: 9.500
Variance: 26.917
Skewness: 0.000
Kurtosis: -1.207
Min: 1.000
Max: 18.000

Pos 'Pos'

Storage mode: double
Measurement: interval

Mean: 1.500
Variance: 0.250
Skewness: 0.000
Kurtosis: -2.000
Min: 1.000
Max: 2.000

Group 'Group'

Storage mode: double
Measurement: interval
Mean: 5.000
Variance: 6.667
Skewness: 0.000
Kurtosis: -1.230
Min: 1.000
Max: 9.000

==

Offer 'Offer'

==

Storage mode: double
Measurement: interval

 Mean: 0.327
 Variance: 0.137
 Skewness: 0.481
 Kurtosis: -1.424
 Min: 0.000
 Max: 1.000

==

Receive 'Receive'

==

Storage mode: double
Measurement: interval

 Mean: 0.981
 Variance: 1.230
 Skewness: 0.481
 Kurtosis: -1.424
 Min: 0.000
 Max: 3.000

==

Return 'Return'

==

Storage mode: double
Measurement: interval

 Mean: 0.409
 Variance: 0.381
 Skewness: 1.502
 Kurtosis: 1.437
Min: 0.000
Max: 2.763

GetBack 'GetBack'

Storage mode: double
Measurement: interval

Mean: 0.409
Variance: 0.381
Skewness: 1.502
Kurtosis: 1.437
Min: 0.000
Max: 2.763

country 'country'

Storage mode: double
Measurement: interval

Mean: 18.069
Variance: 721.620
Skewness: 2.555
Kurtosis: 4.875
Min: 1.000
Max: 99.000

siblings 'siblings'

Storage mode: double
Measurement: interval

Mean: 2.903
Variance: 131.421
Skewness: 8.176
Kurtosis: 65.579
Min: 0.000
Max: 99.000

==
sex 'sex'

Storage mode: double
Measurement: interval

Mean: 10.986
Variance: 826.375
Skewness: 2.718
Kurtosis: 5.390
Min: 1.000
Max: 99.000

age 'age'

Storage mode: double
Measurement: interval

Mean: 32.694
Variance: 565.379
Skewness: 2.275
Kurtosis: 3.567
Min: 16.000
Max: 99.000

The memisc approach preserves more information. Often this is more intuitive. Some packages are, however, confused by these attributes.

Stata 13 Every now and then stata changes their file format:

```r
library(readstata13)
sta13<-read.dta13("data/180716_060x.dta13")
```

6.1.4 Reading CSV Files

CSV-Files (Comma-Separated-Value) Files are in no way always comma separated. The term is rather used to denote any table with a constant separator. Some of the parameters that always change are:

- Separators: , ; TAB
- Quoting of strings: " " —
- Headers: with / without
As a result, the `read.table` has many parameters.

```r
csv <- read.csv("data/180716_060x.csv", sep="\t")
str(csv)
```

The advantage of CSV as a medium to exchange data is: CSV can be read by any software. The disadvantage is: No extra information (variable labels, levels of factors, ...) can be stored.

6.1.5 Reading Microsoft Excel files before 2007 (xls)

```r
library(readxl)
read_excel(path,sheet)
```

Sometimes the `.xls` file is not really a data frame but has to be parsed before one can translate it into a data frame. You might find the following approach helpful if records contain an unequal number of entries.

First extract all the lines...

```r
file<-"data/180716_0601.xls"
system(paste("ssconvert --export-type Gnumeric_stf:stf_assistant -O 'separator=\"\t\"'", file,"tmp.csv"))
aa<-readLines("tmp.csv")
```

Determine the number of entries for each record. Here we subset only records with the same number of entries as the previous to the last one:

```r
aa2l<-unlist(lapply(strsplit(aa,"\t"),length))
xx<-ldply(strsplit(aa[aa2l==aa2l[length(aa2l)-1]],split="\t"))
```

6.1.6 Reading writing Microsoft Office Open XLS files (xlsx)

```r
library(xlsx)
df <- read.xlsx(path,sheet)
#
write.xlsx(data,path)
#
w <- createWorkbook()
sheet <- createSheet(w)
addDataFrame(data,sheet)
saveWorkbook(w,path)
```

6.1.7 Filesize

For our example we obtain the following sizes:
6.2 Checking Values

load("data/180716_060x_C.Rdata")

6.2.1 Range of values

codebook(data.set(trustC))

trustC.Offer 'trustor's offer'

Storage mode: double
Measurement: interval

<table>
<thead>
<tr>
<th>Min</th>
<th>Max</th>
<th>Mean</th>
<th>Std.Dev.</th>
<th>Skewness</th>
<th>Kurtosis</th>
<th>Miss.</th>
<th>NAs</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.000</td>
<td>1.000</td>
<td>0.654</td>
<td>0.244</td>
<td>-0.684</td>
<td>0.034</td>
<td>216.000</td>
<td>216.000</td>
</tr>
</tbody>
</table>

trustC.country 'country of origin'

Storage mode: double
Measurement: nominal
Missing values: 98, 99

Values and labels N Percent
6.2.2 (Joint) distribution of values

Basic plots

```r
with(trustC, hist(GetBack/Offer))
boxplot(GetBack/Offer ~ sub("_","",Date), data=trustC, main="Boxplot")
with(trustC, plot(ecdf(GetBack/Offer)))
abline(v=1)
```

Joint distributions

First pool all data:
If something is suspicious (which does not seem to be the case here) plot the data for subgroups:

```r
coplot(GetBack ~ Offer | Period + Date, data=trustC, show.given=FALSE)
```

The Kakadu data contains variables `lower` and `upper`.

```r
data(Kakadu)
nrow(Kakadu)
```

[1] 1827

- `lower`: lowerbound of willingness to pay, 0 if observation is left censored
• upper upper bound of willingness to pay, 999 if observation is right censored

When our data falls into a small number of categories a simple scatterplot is not too informative. The right graph shows a scatterplot with some \textit{jitter} added.

\begin{verbatim}
plot(lower ~ upper, data=Kakadu)
abline(a=0, b=1)
plot(jitter(lower, factor=50) ~ jitter(upper, factor=50), cex=.1, data=Kakadu)
\end{verbatim}

With such a large number of observations, and so few categories, a table might be more informative.

\begin{verbatim}
with(Kakadu, table(lower, upper))
\end{verbatim}

\begin{table}[h]
\centering
\begin{tabular}{cccccccc}
\hline
 & \multicolumn{7}{c}{upper} \\
\hline
 & 2 & 5 & 20 & 50 & 100 & 250 & 999 \\
\hline
lower & 0 & 129 & 147 & 156 & 176 & 0 & 0 & 0 \\
 & 2 & 0 & 9 & 0 & 0 & 0 & 0 & 0 \\
 & 5 & 0 & 0 & 63 & 0 & 0 & 0 & 0 \\
 & 20 & 0 & 0 & 0 & 69 & 0 & 0 & 321 \\
 & 50 & 0 & 0 & 0 & 0 & 76 & 0 & 281 \\
 & 100 & 0 & 0 & 0 & 0 & 0 & 61 & 187 \\
 & 250 & 0 & 0 & 0 & 0 & 0 & 0 & 152 \\
\hline
\end{tabular}
\end{table}

6.2.3 (Joint) distribution of missings

• Do we expect any missings at all?

• Are missings where they should be?

 – e.g. number of siblings=0, age of oldest sibling=NA ✗
In our dataset we do not have the age of the oldest sibling, but let us just pretend:

```r
with(trustGS$subjects, table(siblings, age, useNA = 'always'))
```

<table>
<thead>
<tr>
<th>age</th>
<th>0</th>
<th>6</th>
<th>12</th>
<th>0</th>
<th>0</th>
<th>6</th>
<th>12</th>
<th>18</th>
<th>0</th>
<th>0</th>
<th>6</th>
<th>12</th>
<th>0</th>
<th>0</th>
<th>6</th>
<th>6</th>
<th>12</th>
<th>6</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>siblings</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>20</td>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
<td>29</td>
<td>30</td>
<td>31</td>
<td>32</td>
<td>33</td>
<td>98</td>
<td>99</td>
</tr>
</tbody>
</table>

[reachedgetOption("max.print") -- omitted 5 rows]

```r
with(trustGS$subjects, table(siblings, is.na(age)))
```

<table>
<thead>
<tr>
<th>siblings</th>
<th>FALSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>114</td>
</tr>
<tr>
<td>1</td>
<td>90</td>
</tr>
<tr>
<td>2</td>
<td>96</td>
</tr>
<tr>
<td>3</td>
<td>126</td>
</tr>
<tr>
<td>99</td>
<td>6</td>
</tr>
</tbody>
</table>

The discussion of value labels in section 6.5 contains more details on missings.

6.2.4 Checking signatures

How can we make sure that we are working on the “correct dataset”?

Assume you and your coauthors work with what you think is the same dataset, but you get different results.

Solution: compare checksums.

```r
library(tools)
md5sum("data/180716_060x.Rdata")
```

```
data/180716_060x.Rdata
"c42ec5c276a08c04d900dc98b659b8b3"
```

It might be worthwhile to include in the draft version of your paper the checksum of your datasets.

6.3 Naming variables

We already mentioned variable names in section 92.

- short but not too short

```r
lm ( otherinvestment ~ trust + ineq + sex + age + latitude + longitude)
lm ( R100234 ~ R100412 + R100017 + R100178 + R100671 + R100229 + R100228 )
lm ( otherinvestment ~ trustworthiness + inequalityaversion + sexOfProposer + ageOfProposer + latitude)
lm ( oi ~ t + i + s + a + l1 + l2)
```
• changing existing variables creates confusion, better create new ones

• Keep related variables alphabetically together.
 ... ProfitA ProfitB ProfitC ...
 and not
 ... AProfit BProfit CProfit ...

• How do we order variable names anyway?

```r
trustC[, sort(names(trustC))]
```

6.4 Labeling (describing) variables

• Variable names should be short...

• but after a while we forget the exact meaning of a variable
 – What was the difference between Receive and GetBack?
 – Did we code male=1 and female=2 or the opposite?

• Labels provide additional information.

Either...

• use a small number of source files, and keep the information somewhere in the file

...or...

• use many source files and few data files, and keep the information with the data.

```r
load("data/180716_060x.Rdata")
trust <- within(with(trustGS, merge(globals, subjects)), {
  description(Pos) <- "(1=trustor, 2=trustee)"
  description(Offer) <- "trustor’s offer"
  description(Receive) <- "amount received by trustee"
  description(Return) <- "amount trustee sends back to trustor"
  description(GetBack) <- "amount trustor receives back from trustee"
  description(country) <- "country of origin"
  description(sex) <- "participant’s sex (1=male, 2=female)"
  description(siblings) <- "number of siblings"
  description(age) <- "true age"
})

codebook(data.set(trust))
attr(trust, "annotation") <- "Note: 180716_0601 was a pilot,..."
annotation(trust)["note"] = "Note: This is not a real dataset..."
```
• labels can be long, but they should be meaningful even if they are truncated.

The following is not a label but a wording:

```r
description(uncondSend) <- "how much would you send to the other player if no binding contract was possible"
description(condSend) <- "how much would you send to the other player if you had the possibility of a binding contract"
```

Better:

```r
description(uncondSend) <- "how much to send without binding contract"
description(condSend) <- "how much to send with binding contract"
wording(uncondSend) <- "how much would you send to the other player if no possibility of a binding contract was possible"
wording(condSend) <- "how much would you send to the other player if you had the possibility of a binding contract"
```

General attributes

```r
description() short description of the variable always
wording() wording of a question if necessary
annotation() ["..."] e.g. specific property of dataset if necessary
how a variable was created if necessary
```

6.5 Labeling values

Let us again list some interesting datatypes:

• numbers: 1, 2, 3

• characters: “male”, “female”, ...

• factors: “male”=1, "female"=2,...

 – factors are integers + levels, often treated as characters.
 – factors have only one type of missing (this is not a restriction, since the type of missingness could be stored in another variable)

The `memisc`-package provides another type: item

• item: “male”=1, "female"=2,...

 items are numbers + levels, often treated as numbers.

 items can have several types of missings. Useful for questionnaire (or from z-Tree).
trustC$sex 'participant's sex (1=male, 2=female)'

Storage mode: double
Measurement: nominal
Missing values: 98, 99

<table>
<thead>
<tr>
<th>Values and labels</th>
<th>N</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>'male'</td>
<td>174</td>
<td>44.6</td>
</tr>
<tr>
<td>'female'</td>
<td>216</td>
<td>55.4</td>
</tr>
<tr>
<td>'refused'</td>
<td>18</td>
<td>4.2</td>
</tr>
<tr>
<td>'missing'</td>
<td>24</td>
<td>5.6</td>
</tr>
</tbody>
</table>

\[
\text{table(as.factor(trustC$sex), useNA="always")}
\]

\[
\begin{array}{ccc}
\text{male} & \text{female} & \text{<NA>} \\
174 & 216 & 42 \\
\end{array}
\]

\[
\text{table(as.numeric(trustC$sex), useNA="always")}
\]

\[
\begin{array}{ccc}
1 & 2 & \text{<NA>} \\
174 & 216 & 42 \\
\end{array}
\]

\[
\text{table(as.character(trustC$sex), useNA="always")}
\]

\[
\begin{array}{cccccc}
\text{female} & \text{male} & \text{missing} & \text{refused} & \text{<NA>} \\
216 & 174 & 24 & 18 & 0 \\
\end{array}
\]

\text{useNA="always" allows us to count missings. mean(is.na()) allows us to calculate the fraction of missings. The result depends on the representation.}

\[
\text{mean(is.na(trustC$sex))}
\]

\[
[1] \ 0
\]

\[
\text{mean(is.na(as.factor(trustC$sex)))}
\]

\[
[1] \ 0.09722222
\]

\[
\text{mean(is.na(as.numeric(trustC$sex)))}
\]

\[
[1] \ 0.09722222
\]

\[
\text{mean(is.na(as.character(trustC$sex)))}
\]

\[
[1] \ 0
\]
How do we add labels to values? (requires memisc)

```
trust <- within(trust, {
  labels(sex)<-c("male"=1,"female"=2,"refused"=98,"missing"=99)
  labels(siblings)<-c("refused"=98,"missing"=99)
  labels(age)<-c("refused"=98,"missing"=99)
  labels(country)<-c("a"=1, "b"=2, "c"=3, "d"=4, "e"=5, "f"=6, "g"=7, "h"=8, "i"=9, "j"=10, "k"=11, "l"=12)
  missing.values(sex)<-c(98,99)
  missing.values(siblings)<-c(98,99)
  missing.values(age)<-c(98,99)
  missing.values(country)<-c(98,99)
})
```

6.6 Recoding data

6.6.1 Replacing meaningless values by missings

In our trust game not all players have made all decisions. z-Tree coded these “decisions” as zero. This can be misleading. Better code them as missing.

```
trustC <- within(trust, {
  Offer [Pos==2 & Offer==0] <-NA
  GetBack[Pos==2 & GetBack==0]<-NA
  Receive[Pos==1 & Receive==0]<-NA
  Return [Pos==1 & Return==0] <-NA
})
```

```
save(trustC,file="data/180716_060x_C.Rdata")
```

Introducing missings makes a difference. The left graph shows the plot where missings were coded (wrongly) as zeroes, the right graph shows the plot with missings coded as missings.

```
c(ecdfplot(~Offer,data=trust),ecdfplot(~Offer,data=trustC))
```
6.6.2 Replacing values by other values

Sometimes we want to simplify our data. E.g. the siblings variable might be too detailed.

```r
trustC <- within(trustC, altSiblings <- recode(siblings, 
  "single child" = 0 <- 0, 
  "siblings" = 1 <- range(1,50), 
  "refused" = 98 <- 98, 
  "missing" = 99 <- 99))
```

6.6.3 Comparison of missings

We can not compare NAs. The following will fail in R:

```r
if(NA == NA) print("ok")
```

Error in if (NA == NA) print("ok"): missing value where TRUE/FALSE needed

```r
if(7 < NA) print("ok")
```

Error in if (7 < NA) print("ok"): missing value where TRUE/FALSE needed

(Note that the equivalent in Stata, . == . and 7 < ., do not fail but return TRUE.)

The following works:

```r
x<-NA
if(is.na(x)) print("x is na")
```

[1] "x is na"

6.7 Changing variables – creating new variables

- give them new names (overwriting “forgets” previous information)
- give them labels
- keep the old variables
6.8 Select subsets

(See the remarks on subsetting in section 5.1)

- delete records you will never ever use (in the cleaned data, not in the raw data)

\[\text{trust} \leftarrow \text{subset}(\text{trust}, \text{Pos} \neq 2) \]

- generate indicator variables for records you will use in a specific context

\[\text{trust} \leftarrow \text{within}(\text{trust}, \text{youngSingle} \leftarrow \text{age} < 25 \& \text{siblings} = 0) \]
\[\text{with}(\text{subset}(\text{trust}, \text{youngSingle}), ...) \]

7 Weaving and tangling

- Describe the research question.
 Which model do we use to structure this question?
 Which hypotheses do we want to test?

- Describe the method.

- Describe the sample.
 How many observations, means, distributions of main variables, key statistics?
 Is there enough variance in the independent variables to test what you want to test?

- Test hypotheses based on the model.
 Possibly different variants of the model (increasing complexity).

- Discuss model, robustness checks

7.1 How can we link paper and results?

Lots of notes in the paper, e.g. the following:

In your \LaTeX-file...:

\%
\% the following table was created by \texttt{tableAvgProfits()}\n\%
\% \texttt{from \texttt{projectXYZ_160621.R}}\n\%
\% \begin{table}\n\% \%
\% \end{table}\n\%
\% ...

Better: Weave (Sweave, knitr)
7.2 A history of literate programming

Donald Knuth: The CWEB System of Structured Documentation (1993)

What is “literate programming”:

• meaningful and readable high-quality documentation

• details are usually not included in #comments

• supposed to be read

• facilitates feedback and reuse of code

• reduces the amount of text one must read to understand the code

Literate programming for empiricists:

• tangle (Stangle, knit(..., tangle=TRUE)): foo.Rnw \rightarrow foo.R

• weave (Sweave, knit): foo.Rnw \rightarrow foo.tex
 (may contain parts of foo.R)

What does Rnw mean:

• R for the R project

• nw for noweb (web for no particular language, or Norman Ramsey’s Web)
Nonliterate versus literate work

Nonliterate:

Remember: it is easy to confuse the different version of the analysis and their relation to the versions of the paper.

Literate:

With literate programming in the analysis we avoid one relevant source of errors: Confusion about which parts of our work do belong together and which do not.

Advantages of literate programming

- *Connection* of methods to paper (no more: ‘which version of the methods were used for which figure, which table’)

- The paper is *dynamic*
 - More raw data arrives: the new version of the paper writes itself
 - You organise and clean the data differently: the new version of the paper writes itself
 - You change a detail of the method which has implications for the rest of the paper: the new version of the paper writes itself

Don’t write:
We ran 12 sessions with 120 participants.

instead:
numSession <- length(unique(sessionID))
numPart <- length(unique(partID))

\[\text{We ran } \texttt{\textbackslash Sexpr{numSession}} \text{ sessions with } \texttt{\textbackslash Sexpr{numPart}} \text{ participants.}\]
7.3 An example

Here is a brief Rnw-document:

```latex
\documentclass{article}
\begin{document}
  text that explains what you are doing and why it is interesting ...

<<someCalculations,results='asis',echo=FALSE>>=
library(Ecdat)
library(xtable)
library(lattice)
data(Caschool)
attach(Caschool)
est <- lm(testscr ~ avginc)
xtable(anova(est))
@

<<aFigure,echo=FALSE,fig.width=4,fig.height=3>>=
xyplot(testscr ~ avginc,xlab="average income",ylab="testscore",
  type=c("p","r","smooth"))
@

the correlation between average income and testscore is \Sexpr{round(cor(testscr,avginc),4)} more text ...
\end{document}
```

To compile this Rnw-file, we can do the following:

```r
library(knitr)
knit("<filename.Rnw>")
system("pdflatex <filename.tex>")
```

...or use a front end like RStudio.
The result, after knitting:

text that explains what you are doing and why it is interesting ...

<table>
<thead>
<tr>
<th></th>
<th>Df</th>
<th>Sum Sq</th>
<th>Mean Sq</th>
<th>F value</th>
<th>Pr(>F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>avginc</td>
<td>1</td>
<td>77204.39</td>
<td>77204.39</td>
<td>430.83</td>
<td>0.0000</td>
</tr>
<tr>
<td>Residuals</td>
<td>418</td>
<td>74905.20</td>
<td>179.20</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

the correlation between average income and testscores is 0.7124.

more text ...

7.4 Text chunks

What we saw:

- The usual \LaTeX-text
- “chunks” like this

```latex
<<>>=
lm(testscr ~ avginc)
@
```

or “chunks” with parameters:

```latex
<<fig.height=2.5>>=
plot(est,which=1)
@
```

more generally

```latex
<<...parameters...>>=
...R-commands...
@
```

What are these parameters:
• <<anyName,...>>=

not necessary, but identifies the chunk. Also helps recycling chunks, e.g. a figure.

<<anotherName,...>>=
<<anyName>>
@

• <<...,eval=FALSE,...>>=

this chunk will not be evaluated (too time consuming...)

• <<...,echo=FALSE,...>>=

the code of this chunk will not be shown

• <<...,fig.width=3,fig.height=3,...>>=

All figures produced in this chunk will have this width and height.

• <<...,results='asis',...>>=

The chunk produces \LaTeX-output which should be inserted here 'as is'.

Furthermore you can include small parts of output in the text:
\Sexpr{...}

Elements of a knitr-document

\documentclass{article}
\begin{document}
<<>>=
opts_chunk["set"](dev='tikz', external=FALSE, fig.width=4.5, fig.height=3, echo=TRUE, warning=TRUE, error=TRUE, message=TRUE, cache=TRUE, autodep=TRUE, size="footnotesize")
@
\usepackage{tikz}

• dev='tikz', external=FALSE sets the format for plots
 (This requires package tikzDevice).
\hspace{1cm} \textbullet \ \texttt{fig.width=4.5,fig.height=3} controls the size for plots.

\hspace{1cm} \textbullet \ \texttt{echo=TRUE, warning=TRUE, error=TRUE, message=TRUE} control what kind of output is shown.

\hspace{1cm} \textbullet \ \texttt{cache=TRUE, autodep=TRUE} do calculate chunks only when they have changed.

\hspace{1cm} \textbullet \ \texttt{size="footnotesize"} size of the output.

All these values can be overridden for specific knitr chunks.

\textbf{Words of caution} \ There is still something that might break:

In case something in R changes in the future, better put somewhere in your document:

\begin{quote}
This document has been generated on \today, with \Sexpr{version$version.string}, on \Sexpr{version$platform}.
\end{quote}

This document has been generated on May 28, 2018, with R version 3.3.3 (2017-03-06), on \texttt{x86_64-pc-linux-gnu}.
To reveal information about attached packages, use \texttt{sessionInfo()}:

\begin{verbatim}
cat(paste(sapply(sessionInfo()$otherPkgs,function(x) paste(x$Package,x$Version)),collapse=", "))
\end{verbatim}

texreg 1.36.18, memisc 0.99.8, MASS 7.3-45, latticeExtra 0.6-28, RColorBrewer 1.1-2, lattice 0.20-34, xtable 1.8-2, car 2.1-4, Ecdat 0.3-1, Ecfun 0.1-7, knitr 1.15.1 .

7.5 \textbf{Advantages}

\hspace{1cm} \textbullet \ Accuracy (no more mistakes from copying and pasting)

\hspace{1cm} \textbullet \ Reproducability (even years later, it is always clear how results were generated)

\hspace{1cm} \textbullet \ Dynamic document (changes are immediately reflected everywhere, this speeds up the writing process)

7.6 \textbf{Practical issues}

\textbf{What if some calculations take too much time} \ Usually you will not be able (or willing) to \textit{always} do the entire journey from your \textit{raw data} to the \textit{paper} in one single step.
Switch FAST to TRUE when you have more time and if you want to re-generate the data.

Alternatively: caching intermediate results

The above chunk is executed only once (unless it changes), results are stored on disk and can be used lateron. (knitr tries hard to understand how chunks depend on each other. Still, this automatic process might fail. You can use dependson or, to be safe, clear the cache. You can set the cache path (at the beginning of your paper) as follows:

In particular when versions of R libraries change, the new version might find it hard to make sense of the old data.

To clear old results:

7.7 When R produces tables

7.7.1 Tables

You can save a lot of work if you harness R to create and format your tables for you. A versatile function is xtable:
<<results='asis'>>

library(xtable)

xtable(x)

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-0.56</td>
<td>1.56</td>
<td>0.13</td>
</tr>
<tr>
<td>2</td>
<td>-0.23</td>
<td>0.07</td>
<td>1.72</td>
</tr>
</tbody>
</table>

You can label rownames and columnames:

<<results='asis'>>

colnames(x)<-c("α","β","γ")
rownames(x)<-c("One","Two")
xtable(x)

<table>
<thead>
<tr>
<th>α</th>
<th>β</th>
<th>γ</th>
</tr>
</thead>
<tbody>
<tr>
<td>One</td>
<td>-0.56</td>
<td>1.56</td>
</tr>
<tr>
<td>Two</td>
<td>-0.23</td>
<td>0.07</td>
</tr>
</tbody>
</table>

Note that xtable sanitizes all entries. Hence, what was meant to look like α is shown as $\backslash \alpha$.

<<results='asis'>>

options(xtable.sanitize.colnames.function=function(x) x)
colnames(x)<-c("α","β","γ")
rownames(x)<-c("One","Two")
xtable(x)

<table>
<thead>
<tr>
<th>α</th>
<th>β</th>
<th>γ</th>
</tr>
</thead>
<tbody>
<tr>
<td>One</td>
<td>-0.56</td>
<td>1.56</td>
</tr>
<tr>
<td>Two</td>
<td>-0.23</td>
<td>0.07</td>
</tr>
</tbody>
</table>
7.7.2 Regression results

```r
library(Ecdat)
data(Caschool)
est1 <- lm(testscr ~ str, data = Caschool)
xtable(summary(est1))
```

| | Estimate | Std. Error | t value | Pr(>|t|) |
|------------------|----------|------------|---------|----------|
| (Intercept) | 698.9330 | 9.4675 | 73.82 | 0.0000 |
| str | -2.2798 | 0.4798 | -4.75 | 0.0000 |

7.7.3 Mixed effects

If we use `lmer` to estimate models with mixed effects, we have a number of possibilities calculating p-values. The `lmerTest` packages uses Satterthwaite’s degrees of freedom method.

```r
library(lme4)
library(lmerTest)
fm1 <- lmer(Informed.liking ~ Product + (1|Consumer), data = ham)
xtable(summary(fm1)["coefficients"])
```

| | Estimate | Std. Error | df | t value | Pr(>|t|) |
|------------------|----------|-------------|------|---------|----------|
| (Intercept) | 5.81 | 0.19 | 320.68 | 30.11 | 0.00 |
| Product2 | -0.70 | 0.23 | 564.00 | -3.03 | 0.00 |
| Product3 | 0.28 | 0.23 | 564.00 | 1.22 | 0.22 |
| Product4 | 0.12 | 0.23 | 564.00 | 0.50 | 0.61 |

7.7.4 Comparison of several estimations

Several libraries format estimation results (e.g. `mtable`) in columns per estimation. Here we use `texreg`.

```r
est1 <- lm(testscr ~ str, data = Caschool)
est2 <- lm(testscr ~ str + elpct, data = Caschool)
est3 <- lm(testscr ~ str + elpct + avginc, data = Caschool)
texreg(list(est1, est2, est3), table = FALSE)
```
Nicer names for equations

```r
texreg(list(smaller=est1, medium=est2, \`model $\gamma$`=est3), table=FALSE)
```

7.7.5 Comparing models with mixed effects

```r
library(lme4)
library(lmerTest)
fml <- lmer(Informed.liking ~ Product + (1|Consumer), data=ham)
fml2 <- lmer(Informed.liking ~ Product*Information + (1|Consumer),data=ham)
texreg(list(fm1, fm2), table=FALSE, single.row=TRUE)
```
98 Workflow of statistical data analysis — Contents

<table>
<thead>
<tr>
<th></th>
<th>smaller model</th>
<th>larger model</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Intercept)</td>
<td>5.81 (0.19)**</td>
<td>5.73 (0.25)**</td>
</tr>
<tr>
<td>Product2</td>
<td>-0.70 (0.23)**</td>
<td>-0.83 (0.33)*</td>
</tr>
<tr>
<td>Product3</td>
<td>0.28 (0.23)</td>
<td>0.15 (0.33)</td>
</tr>
<tr>
<td>Product4</td>
<td>0.12 (0.23)</td>
<td>0.30 (0.33)</td>
</tr>
<tr>
<td>Information2</td>
<td></td>
<td>0.16 (0.33)</td>
</tr>
<tr>
<td>Product2:Information2</td>
<td></td>
<td>0.25 (0.46)</td>
</tr>
<tr>
<td>Product3:Information2</td>
<td></td>
<td>0.27 (0.46)</td>
</tr>
<tr>
<td>Product4:Information2</td>
<td></td>
<td>-0.36 (0.46)</td>
</tr>
<tr>
<td>AIC</td>
<td>2884.29</td>
<td>2889.97</td>
</tr>
<tr>
<td>BIC</td>
<td>2911.13</td>
<td>2934.71</td>
</tr>
<tr>
<td>Log Likelihood</td>
<td>-1436.14</td>
<td>-1434.99</td>
</tr>
<tr>
<td>Num. obs.</td>
<td>648</td>
<td>648</td>
</tr>
<tr>
<td>Num. groups: Consumer</td>
<td>81</td>
<td>81</td>
</tr>
<tr>
<td>Var: Consumer (Intercept)</td>
<td>0.83</td>
<td>0.83</td>
</tr>
<tr>
<td>Var: Residual</td>
<td>4.38</td>
<td>4.38</td>
</tr>
</tbody>
</table>

***p < 0.001, **p < 0.01, *p < 0.05

7.8 Alternatives to \LaTeX

\texttt{knitr} can create other formats

- Markdown (md) \rightarrow html, docx, odt...

Incremental assembly

- ReportRs: docx, odt
- \texttt{pander}: pandoc, HTML, PDF, docx, odt

(similar to Stata’s putdocx)

7.8.1 **Markdown**

text that explains what you are doing and why it is interesting...

```
library(Ecdat)
library(xtable)
library(lattice)
data(Caschool)
attach(Caschool)
est <- lm(testscr ~ avginc)
```
kable(anova(est))
```
```
r
xyplot(testscr ~ avginc,xlab="average income",ylab="testscore",
 type=c("p","r","smooth"))
```

the correlation between average income and testscore is
`r round(cor(testscr,avginc),4)`

more text ...

Translate Rmd into html, odt, docx...

```{r}
library(knitr)
knit("<filename.Rmd>")
pandoc("<filename.md>","docx")
```

### 7.8.2 Incremental assembly

```{r}
library(ReporteRs)
myDoc <- docx()
myDoc <- addParagraph(myDoc, " ... ")
myTable <- FlexTable (data = mtcars)
myDoc <- addFlexTable(myTable)
writeDoc (myDoc, file="<filename.doc>")
```

(similar to Stata’s `putdocx`)

### 7.9 The magic of GNU make

In the same directory where I have my Rnw file, I also have a file that is called `Makefile`. Let us assume that the current version of my Rnw file is called `myProject_160601.Rnw`. Then here is my Makefile

```
PROJECT = myProject_160601
pdf: $(PROJECT).pdf
%.pdf: %.tex
 pdflatex $<
%.tex: %.Rnw
 echo "library(knitr);knit("$\$");" | R --vanilla
```

Let us go through the individual lines of this Makefile.
Here we define a variable. This is useful, since this most of the time the only line of the Makefile I ever have to change (instead of changing every occurrence of the filename)

\texttt{PROJECT = myProject\_160601}

The part pdf before the colon is a target. Since it is the \textit{first} target in the file it is also the \textit{default} target. I.e. make will try to make it whenever I just say

\texttt{make}

Make will do the same when I call it explicitly

\texttt{make pdf}

The part after the colon tells make on which file(s) the target actually \textit{depends} (the \textit{prerequisites}). Here it is only one but there could be several. If all prerequisites exists, and if they are up-to-date (newer than all files they depends on), make will apply the rule. Otherwise, make will try to create the prerequisites (the pdf file in this case, with the help of other rules) and then apply this rule.

\texttt{%.tex: %.Rnw}
\begin{verbatim}
echo "library(knitr);knit("$<");" | R --vanilla
\end{verbatim}

This is a rule that make can use to create tex files. So above we requested the pdf file \texttt{myProject\_160601.pdf}, and now make knows that we require a file \texttt{myProject\_160601.tex}. If this already exists and is up-to-date (i.e. newer than all files it depends on), make will apply this rule. Otherwise, make will first try to create the prerequisite (the single tex file in this case would be created with the help of other rules) and then apply this rule.

To create our pdf it is now sufficient to say (from the command line, not from R)

\texttt{make}

and make will do everything that is needed.

Note 1: In this context a simple shell script would work almost as well. However, \texttt{make} is very helpful when your pdf file depends on more than one tex or Rnw file.

Note 2: On BSD Systems GNU Make is called \texttt{gmake}, not \texttt{make}.
A Makefile for a larger project  When I wrote this handout I split it into several Rnw files. This saves time. When I make changes to one part, only this part has to be compiled again. The files were all in the same directory. The directory also contained a “master”-tex file that would assemble the tex-files for each Rnw-file.

The following example shows how we assemble the output of several files to make one document:

```
PROJECT = myProject_160601
RPARTS = $(wildcard $(PROJECT)_[1-9].Rnw)
TEXPARTS = $(RPARTS:.Rnw=.tex)

df: $(PROJECT).pdf

our project depends on several files:
$(PROJECT).pdf: $(TEXPARTS) $(PROJECT).tex
 pdflatex $(PROJECT)

only the tex files who belong to Rnw files
should be knitted:
$(TEXPARTS) : %.tex : %.Rnw ; \n echo "library(knitr);knit("$<");" | R --vanilla
```

8 Version control

8.1 Problem 1 – concurrent edits

What happens if two authors, Anna and Bob, simultaneously want to work on the same file. Chances are that one is deleting the changes of the other. (This problem is similar to one author working on two different machines)

- Anna’s work is lost — very inefficient (50% of the contribution is lost)

8.2 A “simple” solution: locking

Serialising the workflow might help. Anna could put a “lock” on a file while she wants to edit this file. Only when she is finished, the “unlocks” the file and Bob can continue.
8.3 Problem II – nonlinear work

Even when Anna works on a problem on her own she can be in conflict with herself. Imagine the following: Anna successfully completed the steps A, B, and C on a paper and has now something readable that she could send around. Perhaps she actually has sent it around. Now she continues to work on some technical details D and E, but so far her work in incomplete – D and E are not ready for the public. Suddenly the need arises to go back to the last public version (C) and to add some work there (e.g. Anna decides to submit the paper to a conference, but wants to rewrite the introduction and the conclusion. It will take too much time to first finish the work on D and E, so she has to go back to C. Rewriting the introduction and conclusion are steps F and G. Once the paper (G) has been submitted, Anna wants to return to the technical bits D and E and merge them with F and G.

8.4 Version control

(revision control, source control) Traditional:

- Editions of a book
- Revisions of a specification

Software:

- Concurrent Versions System (CVS)
- Subversion (SVN)
- Git
- Mercurial
In this course we will use Git.

- Free
- Distributed repository
- Supports many platforms, formats

8.5 Solution to problem II: nonlinear work

Before we create our first git-repository, we have to provide some basic information about ourselves:

```
git config --global user.name "Your Name Comes Here"
git config --global user.email you@yourdomain.example.com
```

Now we can create our first repository:

```
git init
```

We can check the current “status” as follows:

```
git status
```

```
On branch master
Initial commit
nothing to commit (create/copy files and use "git add" to track)
```

Now we create a file test.Rnw

```
git status
```

```
On branch master
Initial commit
Untracked files:
(use "git add <file>..." to include in what will be committed)
test.Rnw
nothing added to commit but untracked files present (use "git add" to track)
```

```
git add test.Rnw
```
git status

# On branch master
# Initial commit
# Changes to be committed:
# (use "git rm --cached <file>..." to unstage)
# new file: test.Rnw

git commit -a -m "first version of test.Rnw"

# On branch master
nothing to commit, working directory clean

git log --oneline
3ea6194 first version of test.Rnw

Note that git denotes versions with identifiers like “3ea6194” (and not A, B, C). After some changes to test.Rnw...

# On branch master
# Changes not staged for commit:
# (use "git add <file>..." to update what will be committed)
# (use "git checkout -- <file>..." to discard changes in working directory)
# modified: test.Rnw
# no changes added to commit (use "git add" and/or "git commit -a")

# On branch master
nothing to commit, working directory clean

74fd521 introduction and first results
3ea6194 first version of test.Rnw

More changes and...

git commit -a -m "draft conclusion"
more changes and...

git commit -a -m "improved regression results (do not fully work)"
more changes and...

git commit -a -m "added funny model (does not fully work yet)"
Assume we want to go back to 1d05e8f but not forget what we did between 1d05e8f and f965066.

Remember current state:

```bash
git branch funnyModel
```

Now that we have given the current branch a name we can revert to the old state:

```bash
git reset 1d05e8f
```

Unstaged changes after reset:

```bash
M test.Rnw
```

```bash
git checkout test.Rnw
git status
```

```
On branch master
nothing to commit, working directory clean
```

do more work...

```bash
git commit -a -m "rewrote introduction"
do even more work...
```

```bash
git commit -a -m "rewrote conclusion, added literature"
```
eventually we want to join the two branches:

```bash
$ git merge funnyModel
```

now two things can happen: Either this...

Merge made by recursive.
```
| test.Rnw | 1 +
|----------|------
| 1 files changed, 1 insertions(+) 0 deletions(-) |
```

or that...

```
Auto-merging test.Rnw
CONFLICT (content): Merge conflict in test.Rnw
Automatic merge failed; fix conflicts and then commit the result
```

We can fix this with `git mergetool`:

```bash
$ git mergetool
```

```
Merging:
 test.Rnw

Normal merge conflict for 'test.Rnw':
 (local): modified file
 (remote): modified file
Hit return to start merge resolution tool (meld):
```

Now we can make detailed merge decisions in an editor.

```bash
$ git commit -m "merged funnyModel"
```

To make the previous part work...

- you need a mergetool installed (have a look at meld)
- you either tell git to use this tool (`git mergetool --tool=meld`)
- or you tell git once and for all that a specific tool is your favourite:
  ```bash
 $ git config --global --add merge.tool meld
  ```
- (you can do the same for the difftool:)
  ```bash
 $ git config --global --add diff.tool meld
  ```
8.6 Solution to problem 1: concurrent edits

Version control allows all authors to work on the file(s) simultaneously.

In this example we start with an empty repository. In a first step both Anna and Bob “checkout” the repository, i.e. they create a local copy of the repository on their computer.

Anna creates a file, adds it to version control and commits it to the repository. Bob then updates his copy and, thus, obtains Anna’s changes.

- First step: create a “bare” repository on a “server”
  \[\texttt{git --bare init}\]

- This repository can now be accessed from “clients”, either on the same machine...
  \[\texttt{git clone /path/to/repository/}\]

  ...or on a different machine via ssh (where user has access rights):
  \[\texttt{git clone ssh://user@my.server.org/path/to/repository}\]

Anna Repository Bob

<table>
<thead>
<tr>
<th>Anna</th>
<th>Repository</th>
<th>Bob</th>
</tr>
</thead>
<tbody>
<tr>
<td>empty</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[\texttt{git clone ...}\] creates a file test.Rnw:

| A=...   |
| B=...   |

\[\texttt{git add test.Rnw}\]

\[\texttt{git commit}\]

uploads the file:

\[\texttt{git push}\]

| A=...   | A=...   |
| B=...   | B=...   |

\[\texttt{git pull}\]

A=...	A=...
B=...	B=...
A=...	A=...

8.7 Edits without conflicts:

To make this more interesting we now assume that both work on the file. Anna works on the upper part (A), Bob works on the lower part (B). Both update and commit their changes.
Since they both edit different parts of the file, the version control system can silently merge their changes.

<table>
<thead>
<tr>
<th>Anna</th>
<th>Repository</th>
<th>Bob</th>
</tr>
</thead>
<tbody>
<tr>
<td>A=1</td>
<td>B=...</td>
<td>A=... B=2</td>
</tr>
<tr>
<td>A=... B=...</td>
<td>A=... B=2</td>
<td></td>
</tr>
</tbody>
</table>

Both commit their work to their own local repos:

- Anna: `git commit -a -m "..."`
- Bob: `git commit -a -m "..."`

Anna pulls, but there is no conflict

- Anna: `git pull`
- Bob waits

Anna pushes her changes

- Anna: `git push`
- Bob waits
- Bob pulls, and finds a merge conflict

- Bob: `git pull`
- Bob: `git mergetool`

<table>
<thead>
<tr>
<th>Anna</th>
<th>Repository</th>
<th>Bob</th>
</tr>
</thead>
<tbody>
<tr>
<td>A=1</td>
<td>B=...</td>
<td>A=1 B=2</td>
</tr>
<tr>
<td>A=1</td>
<td>B=...</td>
<td>A=1 B=2</td>
</tr>
<tr>
<td>A=1</td>
<td>B=...</td>
<td>A=1 B=2</td>
</tr>
<tr>
<td>A=1</td>
<td>B=2</td>
<td>A=1 B=2</td>
</tr>
</tbody>
</table>

Bob commits his merge

- Bob: `git commit -a -m "..."`

Bob pushes his merge

- Bob: `git push`

Anna pulls to get the current version

- Anna: `git pull`

8.8 Going back in time

Version control is not only helpful to avoid conflicts between several people, it also helps when we change our mind and want to have a look into the past. `git log` provides a list of the different revision of a file:

```
git log --oneline
```

f965066 added funny model (does not fully work yet)
git blame allows you to inspect modifications in specific files. If we want to find out who introduced or removed “something specific” (and when), we would say...

```bash
 git blame -L '/something specific/' test.Rnw
```

19eb9bac (w6kiol2 2016-06-17 ...) therefore important to study something specific which dd0647f7 (w6kiol2 2016-06-21 ...) switched our focus to something else and continue with

There is a range of GUIs that allow you to browse the commit tree. Try, e.g., gitk

### 8.9 git and subversion

- `git`-Server: requires ssh access to the server machine
- `subversion`-Server: provided by the URZ at the FSU Jena

  git can use subversion as a remote repository:

  ```bash
 git clone git svn clone
 git pull git svn rebase
 git commit git commit ← no need to change
 git push git svn dcommit
  ```

- Conceptual differences:
  - subversion has only one repository (on the server), git has one or more local repositories plus one or more on different servers.
  - inconsistent uploads to a server:
    - subversion will not complain if after a push/commit the state on the server is different from the state on any of the clients. git will not allow this (git forces you to pull first, merge, commit, and push then)

#### 8.10 Limitations

**8.10.1 General thoughts**

git works well on text files (\LaTeX, Rnw, R,...).

Git can not make sense of binary files (Pictures, PDF, Rdata, files created by office software...).
If a binary file is based on a text file (e.g., a graph is created from an R file), then the text file should be stored and should be under version control. The binary file can always be recreated from the text file.

- We should organise our work such that (if possible) only text files define the work.
- If binary files are unavoidable, they should not change frequently.

### 8.10.2 Interaction with Office software

If a coauthor insists on using office software (which stores files as binaries)...

- Convert office file into text file (e.g., with pandoc) and version control the text file.

```bash
pandoc officeDocument.docx -o paper.tex
git add paper.tex
git commit -a "added tex version of office document"
git push

;

git pull
pandoc paper.tex -o newVersionOfOfficeDocument.docx
```

→ conversion will lose parts of the paper (formulae).

Process does not work too well.

### 8.11 Steps to set up a subversion repository at the URZ at the FSU Jena

If you need to set up a subversion repository here at the FSU, tell me about it and tell me the ⟨urz-login⟩s of the people who plan to use it. Technically, setting up a new repository means the following:

- ssh to subversion.rz.uni-jena.de
- svnadmin create /data/svn/ewf/⟨repository⟩
- chmod -R g+w /data/svn/ewf/⟨repository⟩
- set access rights for all involved ⟨urz-login⟩s in /svn/access-ewf
- then, at the local machine in a directory that actually contains only the files you want to add: svn --username ⟨urz-login⟩ import . https://subversion.rz.uni-jena.de/svn/ewf "Initial import"
  (this “imports” data into the repository)
- then, at all client machines,

```bash
svn --username ⟨urz-login⟩ checkout https://subversion.rz.uni-jena.de/svn/ewf
```
8.12 Setting up a subversion repository on your own computer

- On your own computer: `svnadmin create ⟨path⟩/⟨repository⟩`
  
  ⟨⟨path⟩⟩ is a complete path, e.g. /home/user/Documents/ or /C:MyDocuments/)

- then, in a directory that actually contains only the files you want to add:
  
  `svn import . file://⟨path⟩/⟨repository⟩ -m "Initial import"

- then, wherever you actually want to work on your own computer:
  
  `svn checkout file://⟨path⟩/⟨repository⟩`

- if you have ssh access to your computer you can also say from other machines:
  
  `svn checkout svn+ssh://⟨yourComputer⟩/⟨path⟩/⟨repository⟩`

8.13 Usual workflow with git

While setting up a repository looks a bit complicated, using it is quite simple:

- `git pull` check whether the others did something

  **editing**

  - `git add` add a file to version control
  - `git mv` move a file under version control
  - `git rm` delete a file under version control

- `git commit` commit own work to local repository

- `git pull` check whether the others did something

- `git mergetool` merge their changes

- `git commit` commit merge

- `git push` upload everything to the server
## 8.14 Exercise

### 8.14.1 SVN

Create (in \(\langle path\rangle\)) four directories A, B, C.

<table>
<thead>
<tr>
<th>From A create a repository:</th>
<th>svnadmin create ../R</th>
</tr>
</thead>
</table>

In A create a file `test.txt` with some text:

<table>
<thead>
<tr>
<th>In A create a file <code>test.txt</code> with some text:</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>A=...</code></td>
</tr>
<tr>
<td><code>B=...</code></td>
</tr>
</tbody>
</table>

Initial import. In A say:

```
svn import . file://\langle path\rangle/R -m "My first initial import"
```

<table>
<thead>
<tr>
<th>Initial import. In A say:</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>svn import . file://\langle path\rangle/R -m &quot;My first initial import&quot;</code></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>in B:</th>
<th>in C:</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>svn checkout file://\langle path\rangle/R</code></td>
<td><code>svn checkout file://\langle path\rangle/R</code></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>in B/R:</th>
<th>in C/R:</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>svn checkout file://\langle path\rangle/R</code></td>
<td><code>svn checkout file://\langle path\rangle/R</code></td>
</tr>
</tbody>
</table>

Simultaneous changes to `test.txt`

<table>
<thead>
<tr>
<th>Simultaneous changes to <code>test.txt</code></th>
</tr>
</thead>
<tbody>
<tr>
<td><code>A=1</code></td>
</tr>
<tr>
<td><code>B=...</code></td>
</tr>
<tr>
<td><code>A=2</code></td>
</tr>
<tr>
<td><code>B=...</code></td>
</tr>
</tbody>
</table>

Commit changes

```
svn commit
```

<table>
<thead>
<tr>
<th>Commit changes</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>svn commit</code></td>
</tr>
</tbody>
</table>

Update

```
svn update
```

<table>
<thead>
<tr>
<th>Update</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>svn update</code></td>
</tr>
</tbody>
</table>
8.14.2 Git
Create (in \textit{⟨path⟩}) four directories A, B, C.

In A create a repository: \texttt{git init}

In A create a file \texttt{test.txt} with some text: \texttt{A=\ldots B=\ldots}

In A: stage and commit
\texttt{git add test.txt}
\texttt{git commit -am "first commit"}

In R: create a remote repository
\texttt{git init --bare ../R}

In A: make R a remote of A
\texttt{git remote add origin ../R}
\texttt{git push --set-upstream origin master}

In A: push work from A to R
\texttt{git push}

In B: checkout from R to B:
\texttt{git clone ../R}

In C: checkout from R to C:
\texttt{git clone ../R}

in B/R:
in C/R:

Simultaneous changes to \texttt{test.txt}

\begin{itemize}
  \item A=1
  \item \texttt{B=\ldots}
  \item A=2
  \item \texttt{B=\ldots}
\end{itemize}

Commit changes
\texttt{git commit -am "change at B"}
\texttt{git commit -am "change at C"}
\texttt{git pull}
\texttt{git push}
\texttt{git pull}
\texttt{git mergetool}
\texttt{git commit -am "merge..."}
\texttt{git push}

9 Exercises

Exercise 1
Have a look at the dataset \texttt{Workinghours} from the library \texttt{Ecdat}. Compare the distribution of “other household income” for whites and non-whites. Do the same for the different types of occupation of the husband.

Exercise 2
Read the data from a hypothetical experiment from \texttt{rawdata/Coordination}. Does the \texttt{Effort} change over time?

Exercise 3-a
Read the data from a hypothetical \texttt{z-Tree} experiment from \texttt{rawdata/Trust}. Do you find any relation between the number of siblings and trust?
Exercise 3-b
For the same dataset: Attach a label (description) to siblings. Attach value labels to this variable.

Exercise 3-c
Make the above a function.
Also write a function that compares the offers of all participants with \( n \) siblings with the other offers. This function should (at least) return a \( p \)-value of a two-sample Wilcoxon test (`wilcox.test`). The number \( n \) should be a parameter of the function.

Exercise 4
Read the data from a hypothetical z-Tree experiment from `rawdata/PublicGood`. The three variables `Contrib1`, `Contrib2`, and `Contrib3` are contributions of the participants to the other three players in their group (in groups of four).

1. Check that, indeed, in each period, players are equally distributed into four groups.
2. Produce for each period a boxplot with the contribution (i.e. 16 boxplots in one graph).
3. Add a regression line to the graph.
4. Produce for each contribution partner a boxplot with the contribution (i.e. 3 boxplots in one graph).
5. Produce an Sweave file that generates the two graphs. In this file also write when you estimate the average contribution reaches zero.