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1 Introduction

Purpose of this handout In this handout you find all
slides from the lecture (in a more printer friendly version).
You also find (most of) the examples in R I plan to use in the
lecture. Attached to the PDF file you find some datasets.

Homepage: http://www.kirchkamp.de/

Literature:

• Jose C. Pinheiro and Douglas M. Bates, Mixed
Effects Models in S and S-Plus. Springer, 2002.

• Julian J. Faraway, Extending the Linear Model
with R. Chapman & Hall, 2006.

Terminology Depending on the field, mixed effects mod-
els are known under different names:

• Mixed effects models

• Random effects models

• Hierarchical models

• Multilevel models

Why mixed effects models?

• Repeated observation of the same unit:

– as part of a panel outside the lab

– participant in the experiment

– group of participants in an experiments

• Reasons for repeated observations:

– within observational unit (participant/group)
comparisons

– study the dynamics of a process (market beha-
viour, convergence to equilibium,. . . )

– allow “learning of the game”

http://www.kirchkamp.de/
http://www.kirchkamp.de/
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A possible experiment Example: Repeated public good
game

Question: is there a decay of contributions over time?

• participants in a group of four can contribute to a
public good

• 8 repetitions

• random matching in groups of 12

• observe 10 matching groups (120 participants)

In our raw data we have 12× 8 × 10 = 960 observa-
tions.

Problems

• Repeated measurements

• always the same participants

• always the same matching groups

Observations are correlated — OLS requires uncorrel-
ated ǫ

Solution A (inefficient):

• Aggregate over matching groups, use conservative
tests (χ2, rank-sum)

Disadvantage:

• Loss of power

• Control of individual properties only through ran-
domisation

(groups/participants might have different and
known (even controlled) properties)

It would be nice to know:

• What is the treatment effect (in the example: the ef-
fect of time)

• What is an effect due to other observables
(e.g. gender, risk aversion, social preferences)

• What is the heterogeneity of participants (due to un-
observable differences)

• What is the heterogeneity of groups (e.g. due to con-
tamination in the experiment)

Alternative (more efficient):

• Models with mixed effects

This example: OLS, fixed effects and random effects In-
dices:

• i individuals 1 . . . 12

• k group 1 . . . 10

• t time 1 . . . 8

• Standard OLS:

yikt = β0 + β1x1,ikt + β2x2,ikt + ǫikt

with ǫikt ∼ N(0, σ)

• Fixed effects for participants i× k:

yikt = β0 + β1x1,ikt + β2x2,ikt + ∑i,k γikdik + ǫikt

with ǫikt ∼ N(0, σ)

• Random effects for participants i× k:

yikt = β0 + β1x1,ikt + β2x2,ikt + νik + ǫikt

with νik ∼ N(0, σν) and ǫikt ∼ N(0, σ)

Fixed effects

+ captures individual heterogeneity

− only describes heterogeneity in the sample (this is not
a problem if sample heterogeneity is experimentally
controlled, e.g. fixed effect for treatment 1 vs. treat-
ment 2)

− less stable since many coefficients have to be estim-
ated

+ makes no distributional assumptions on heterogen-
eity

− can be fooled by spurious correlation among X and
νik

+ unbiased if νik and X are dependent

Random effects

+ captures individual heterogeneity

+ estimates heterogeneity in the population

+ more stable since fewer coefficients have to be estim-
ated

− makes distributional assumptions on heterogeneity

+ exploits independence of νik and X (if it can be as-
sumed)

− biased if νik and X are dependent

Terminology

yikt = β0 + β1x1,ikt + β2x2,ikt + νik + ǫikt

• Random effects — units ik are selected randomly
from a population. The effect is that the mean y de-
pends on the choice of ik.

• Hierarchical/multilevel model — first we explain
variance on the level of ik, then on the level of ikt.

http://www.kirchkamp.de/
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2 Examples

During this course we will set one common variable, load
a few libraries and load some data. The data is attached to
the online version of this PDF:

bootstrapsize <- 100

library(lme4)

library(Ecdat)

library(car)

library(Hmisc)

library(geepack)

load(file = "data/me.Rdata")

2.1 A very simple example

The following figure shows the predicted relationship for
the various methods. The dataset is very simple. We have
only four observations, two from two groups each. The
first groups (shown as circles) are at the bottom left of the
diagram, the second group (triangles) are top right.

simple <- as.data.frame(cbind(x = c(1, 2, 3, 4), y = c(3,

0, 6, 6.8744), i = c(1, 1, 2, 2)))

simple

x y i

1 1 3.0000 1

2 2 0.0000 1

3 3 6.0000 2

4 4 6.8744 2

par(mar = c(4, 4, 0, 0))

plot(y ~ x, data = simple, pch = i)
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• Standard OLS:

yik = β0 + β1xik + ǫik with ǫik ∼ N(0, σ)

ol <- lm(y ~ x, data = simple)

• Between OLS:

yi = β0 + β1xi + ǫi with ǫi ∼ N(0, σ)

betweenSimple <- with(simple, aggregate(simple, list(i),

mean))

betweenOLS <- lm(y ~ x, data = betweenSimple)

• Fixed effects for groups i:

yik = β0 + β1xik + ∑i γidi + ǫik with ǫik ∼ N(0, σ)

We also call the fixed effects model a “within” model,
since only variance within the same group i matters.

fixef <- lm(y ~ x + as.factor(i), data = simple)

• Random effects for groups i:

yik = β0 + β1xik + νi + ǫik with νi ∼ N(0, σν) and
ǫik ∼ N(0, σ)

ranef <- lmer(y ~ x + (1 | i), data = simple)

par(mar = c(4, 4, 0, 0))

plot(y ~ x, data = simple, pch = i)

points(betweenSimple[, c("x", "y")], pch = 3)

legend("topleft", c("i=1", "i=2", "centre"), pch = 1:3,

bg = "white")

abline(ol)

abline(betweenOLS, lty = 3)

qq <- sapply(unique(simple$i), function(g) lines(predict(fixef,

newdata = within(simple, i <- g)) ~ x, data = simple,

lty = 2))

qq <- sapply(ranef@ranef, function(r) abline(a = fixef(ranef)[1] +

r, b = fixef(ranef)[2], lty = 4))

legend("bottomright", c("OLS", "fixed", "between", "random"),

lty = 1:4)
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• The between OLS estimator neglects any variance
within groups and fits a line through the center
(marked with a +) of each group.

• pooled OLS neglects any group specific effect and es-
timates a steeply increasing line. In a sense, OLS im-
poses an infinitely high cost on the fixed effect νi (set-
ting them to 0) and, under this constraint, minimizes
ǫikt.

Pooled OLS yields an estimation between the
between OLS and the fixed effects estimator.

http://www.kirchkamp.de/
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• Clustering is supposed to yield a better estimate for
the standard errors, but does not change the estimate
for the marginal effects.

• The fixed effect estimator neglects all the variance
across groups and does not impose any cost on fixed
effects. Here, the relationship within the two groups
is decreasing on average, hence a negative slope is
estimated.

• The random effect takes into account the νi and the
ǫikt. If the estimated slope is small (as with fixed ef-
fects) the νi are large (in absolute terms) and the ǫikt
are small, if the estimated slope is as large as with the
OLS model, the νi are getting smaller but the ǫikt are
getting larger.

The random effects yields an estimation between the
fixed effect and the (pooled) OLS estimation.

2.2 A larger example

Consider the following relationship:

yit = xit + νi + ǫit
with νi ∼ N(0, σν) and ǫikt ∼ N(0, σ)

We simulate and test now the following methods

• between OLS

• pooled OLS

• clustered OLS

• non-parametric Wilcoxon test

• Fixed effects

• Random effects

set.seed(10)

I <- 6

T <- 50

i <- as.factor(rep(1:I, each = T))

ierr <- 15 * rep(rnorm(I), each = T)

uerr <- 3 * rnorm(I * T)

x <- runif(I * T)

y <- x + ierr + uerr

For comparison we will also construct a dependent vari-
able y2without an individual specific random effect.

y2 <- x + 6 * uerr

We put them all in one dataset.

data <- as.data.frame(cbind(y, y2, x, i, ierr, uerr))

2.3 6 different methods - 6 different results

2.3.1 Pooled OLS

yit = β0 + β1xit + ǫit with ǫik ∼ N(0, σ)

ols <- lm(y ~ x, data = data)

summary(ols)

Call:

lm(formula = y ~ x, data = data)

Residuals:

Min 1Q Median 3Q Max

-23.742 -4.895 2.283 7.343 16.896

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -3.826 1.092 -3.504 0.00053 ***

x 1.071 1.875 0.571 0.56828

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 9.515 on 298 degrees of freedom

Multiple R-squared: 0.001094, Adjusted R-squared: -0.002258

F-statistic: 0.3263 on 1 and 298 DF, p-value: 0.5683

• Estimation of β is consistent if residuals ǫit are uncor-
related with X.

• With repeated observations (as in our case), estima-
tion of σ is generally not consistent.

2.3.2 Clustered OLS

yit = β0 + β1xit + ǫit with ǫik ∼ N(0,Σ)

ols.cluster <- geeglm(y ~ x, id = i, data = data)

summary(ols.cluster)

Call:

geeglm(formula = y ~ x, data = data, id = i)

Coefficients:

Estimate Std.err Wald Pr(>|W|)

(Intercept) -3.8262 4.0798 0.880 0.348

x 1.0711 0.8007 1.789 0.181

Estimated Scale Parameters:

Estimate Std.err

(Intercept) 89.94 36.74

Correlation: Structure = independenceNumber of clusters: 6 Maximum cluster size:

• The estimated coefficients are the same as in the OLS
model. Only the standard errors are different.

• Estimation of β is consistent if residuals (ǫit) are un-
correlated with X.

• Estimation of Σ is better than with pooled OLS (still
problematic for a small number of clusters. Conver-

gence is O(∑C
j=1 N

2
j /N

2)

See Kézdi, Gábor, 2004, Robust Standard Error Estim-
ation in Fixed-Effects Panel Models; Rogers, Regression
standard errors in clustered samples, STB 13, .

http://www.kirchkamp.de/
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2.3.3 Between OLS

yi = β0 + β1xi + ǫi with ǫi ∼ N(0, σ)

data.between <- aggregate(data, list(data$i), mean)

ols.between <- lm(y ~ x, data = data.between)

summary(ols.between)

Call:

lm(formula = y ~ x, data = data.between)

Residuals:

1 2 3 4 5 6

3.341 0.942 -16.880 -5.413 8.087 9.922

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -4.15 68.15 -0.06 0.95

x 1.72 135.10 0.01 0.99

Residual standard error: 11.1 on 4 degrees of freedom

Multiple R-squared: 4.03e-05, Adjusted R-squared: -0.25

F-statistic: 0.000161 on 1 and 4 DF, p-value: 0.99

• Estimation of β is consistent if residuals (νi) are un-
correlated with X.

• Σ can not be estimated.

• The method is inefficient since the variance within a
group is not exploited.

2.3.4 Non-parametric Wilcoxon Test

yit = β0i + β1ixit + ǫit with ǫik ∼ N(0, σi)

estBetax <- sapply(by(data, list(i = data$i), function(data) lm(y ~

x, data = data)), coef)["x", ]

mean(estBetax)

[1] 1.049

wilcox.test(estBetax)

Wilcoxon signed rank test

data: estBetax

V = 16, p-value = 0.3125

alternative hypothesis: true location is not equal to 0

• β can be estimated as the mean of the βi as long as
residuals ǫit are uncorrelated with X i.

• σ is not estimated.

• Efficiency → less efficient than fixed or random ef-
fects, since we do not exploit any relative differences.

2.3.5 Fixed effects

yit = β0 + β1xit +∑
i

γidi + ǫit

fixed <- lm(y ~ x + as.factor(i) - 1, data = data)

summary(fixed)

Call:

lm(formula = y ~ x + as.factor(i) - 1, data = data)

Residuals:

Min 1Q Median 3Q Max

-7.6167 -2.1856 0.0641 2.1945 7.1029

Coefficients:

Estimate Std. Error t value Pr(>|t|)

x 1.063 0.576 1.84 0.066 .

as.factor(i)1 -0.447 0.521 -0.86 0.392

as.factor(i)2 -2.879 0.503 -5.72 2.6e-08 ***

as.factor(i)3 -20.698 0.505 -40.96 < 2e-16 ***

as.factor(i)4 -9.253 0.494 -18.75 < 2e-16 ***

as.factor(i)5 4.232 0.486 8.70 2.4e-16 ***

as.factor(i)6 6.114 0.510 11.99 < 2e-16 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 2.91 on 293 degrees of freedom

Multiple R-squared: 0.918, Adjusted R-squared: 0.916

F-statistic: 470 on 7 and 293 DF, p-value: <2e-16

• Estimation of β is consistent if residuals (ǫit) are un-
correlated with X. This is a weaker requirement,
since, with fixed effects, residuals are only ǫikt, not
νi.

• Estimation of σ is consistent.

• The procedure looses some efficiency, since all the di
are exactly estimated (although we are not interested
in di).

Exercise 2.1 The file ex1.csv contains observations on x1, x2,
y and a group variable group. You are interested in how x1 and
x2 influence y. Estimate the following models, compare their
coefficients and standard errors:

• Pooled OLS

• Pooled OLS with clustered errors

• Between OLS

• Fixed Effects

2.3.6 Random effects

yit = β0 + β1xit + νi + ǫit

random <- lmer(y ~ x + (1 | i), data = data)

summary(random)

Linear mixed model fit by REML

Formula: y ~ x + (1 | i)

Data: data

AIC BIC logLik deviance REMLdev

1530 1545 -761 1528 1522

Random effects:

Groups Name Variance Std.Dev.

i (Intercept) 97.86 9.89

Residual 8.44 2.91

Number of obs: 300, groups: i, 6

Fixed effects:

Estimate Std. Error t value

http://www.kirchkamp.de/
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(Intercept) -3.822 4.052 -0.94

x 1.063 0.576 1.84

Correlation of Fixed Effects:

(Intr)

x -0.072

• Estimation of β is consistent if residuals νi and ǫit are
uncorrelated with X.

• This is a stronger requirement than with fixed effects,
since we also impose a restriction on νi.

(e.g., what, if participants self select into treatments?)

Exercise 2.2 Have another look at the data from ex1.csv. Now
also estimate a model with a random effect for groups.

2.4 The power of the 6 methods

We repeat the above exercise 500 times. Each time we look
at the estimated coefficient βx and at the p-value of testing
βx = 0 against βx 6= 0.

Note: the “true” βx = 1
Here are mean and standard deviations for βx for the

six methods:

between ols cluster wilcox fixed random.x
mean -11.71 0.94 0.94 1.00 1.00 1.00

sd 214.28 3.03 3.03 0.61 0.61 0.61

The figure shows the distribution of estimated βx for
the different methods:
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The good news is: All estimators seem to be unbiased
(although the between estimator has a huge variance here).
Also OLS and clustered OLS are not very efficient. Some-
times they estimate values that are far away from the true
value βx = 1.

Another desirable property of an estimator might be to
find a significant effect if there is, indeed, a relationship.

Here is the relative frequency (in percent) to find in our
simulation a p-value smaller than 5%:

between ols cluster wilcox fixed random.x
6.80 7.80 20.60 15.40 37.40 37.60
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Note that all five methods worked with the same data.
Still, the fixed and random effects method were more suc-
cessful in finding a significant relationship.

2.5 Residuals

In the above exercise we actually knew the correct relation-
ship. How can we discover the need for a fixed- or random
effects model from our data.

2.5.1 OLS residuals

Let us have a look at the residuals of the OLS estimation:

ols2 <- lm(y2 ~ x, data = data)

par(mfrow = c(1, 2), mar = c(4, 4, 4, 0))

boxplot(residuals(ols) ~ i, main = "Residuals with individual effects")

boxplot(residuals(ols2) ~ i, main = "Residuals with no individual effects")
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The left graph shows the residuals for the model where
we do have individual specific effects, the right graph
shows residuals for the y2model without such effects.

http://www.kirchkamp.de/
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2.5.2 Fixed- and random effects residuals

par(mfrow = c(1, 2), mar = c(4, 4, 4, 0))

boxplot(residuals(fixed) ~ i, main = "Residuals of fixed effects model")

boxplot(residuals(random) ~ i, main = "Residuals of random effects model")
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2.5.3 Distribution of residuals over fitted values

Let us also look at the distribution of residuals over fitted
values. We have to check that the standard error of resid-
uals does not depend on X. One way to do this is to check
that the standard error does not depend on Ŷ which is lin-
ear in X:

par(mfrow = c(1, 3), mar = c(4, 6, 4, 0), mex = 0.5)

plot(residuals(ols) ~ fitted(ols), main = "OLS")

plot(residuals(fixed) ~ fitted(fixed), main = "fixed")

plot(residuals(random) ~ fitted(random), main = "random")
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Exercise 2.3 What can you say about the distribution of resid-
uals of your estimates for ex1.csv?

2.5.4 Estimated standard errors

yit = β0 + β1xit + νi + ǫit

Let us compare the estimated standard errors of the resid-
uals ǫikt

summary(ols)$sigma

[1] 9.515

summary(fixed)$sigma

[1] 2.905

summary(random)@sigma

sigmaREML

2.905

Here the estimated standard errors of the random and fixed
effects model are similar. This need not be the case (and
here is due to the fact that the sample is balanced).

2.5.5 Estimated effects

par(mar = c(4, 4, 0, 0))

plot(coef(fixed)[-1], ranef(random)$i[, "(Intercept)"],

xlab = "fixed effects", ylab = "random effects")

abline(a = 0, b = 1)
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We see that the estimated effects for the fixed effects and
for the random effects model are similar. The variance of
the random effects model is smaller.

2.5.6 Information criteria

AIC = −2 log L+ 2k

AIC(ols)

[1] 2207

AIC(fixed)

[1] 1500

When we want to compare the models, we have to use ML
also for the random effects model. Usually random effects
models are estimated with a different method, REML.

randomML <- update(random, REML = FALSE)

summary(randomML)@AICtab

AIC BIC logLik deviance REMLdev

1535 1550 -763.7 1527 1522

http://www.kirchkamp.de/
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2.6 Hausman test

• Fixed effects estimator is consistent but inefficient

• Random effects estimator is efficient, but only con-
sistent if νi is not correlated with X.

In an experiment we can often rule out such a correlation
through the experimental design. Then using random ef-
fects is not problematic. With field data matters can be less
obvious.

If we don’t know whether νi and X are correlated:

• Compare the time varying coefficents of fixed and
random effects estimators:

var(β̂FE − β̂RE) = var(β̂FE)− var(β̂RE) = Ψ

H = (β̂FE − β̂RE)
′
Ψ
−1(β̂FE − β̂RE) ∼ χ2

K

We can define a little function that compares two mod-
els:

hausman

function(fixed,random) {

rNames <- names(random@fixef)

fNames <- names(coef(fixed))

timevarNames <- intersect(rNames,fNames)

k <- length(timevarNames)

rV <- vcov(random)

rownames(rV)=rNames

colnames(rV)=rNames

bDiff <- (random@fixef)[timevarNames] - coef(fixed)[timevarNames]

vDiff <- vcov(fixed)[timevarNames,timevarNames] - rV[timevarNames,timevarNames]

(H <- t(bDiff) %*% solve(vDiff) %*% bDiff)

c(H=H,p.value=pchisq(H,k,lower.tail=FALSE))

}

hausman(fixed, random)

H p.value

0.00002952 0.99566506

We see that in our example there is no reason not to use
random effects. (For completeness: We are looking here at
the difference of two variance-covariance matrices, hence
it is possible that the Hausman statistic becomes negative)

Is the Hausman test conservative? The following graph
extends the aboveMonte Carlo exercise. For each of the 500
simulated datasets we carry out a Hausman test and com-
pare the random with the fixed effects model. The distri-
bution of the estimated p-values is shown in the following
graph.

hm1 <- sapply(simul1, function(x) x[, 7])

plot(ecdf(hm1["p", ]), do.points = FALSE, verticals = TRUE,

main = "Hausman test", xlab = "p value")

abline(a = 0, b = 1, lty = 3)
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Since (by construction of the dataset) there is no correl-
ation between the random νi and the x, the p-value should
be uniformly distributed between 0 and 1. We see that this
is not the case. E.g. we obtain in 16.4% of all cases a p-value
smaller than 10%.

Exercise 2.4 Use a Hausman test to compare the fixed and the
random effects model for the dataset ex1.csv.

2.7 Testing random effects

Do we really have a random effect? How can we test this?

Idea: Likelihood ratio test (this works for testing ran-
dom effects, this does not work very well if we want to test
fixed effects).

generally

χ2
k ∼ 2 · (log(Llarge)− log(Lsmall))

here

χ2
k ∼ 2 · (log(LRE)− log(LOLS))

teststat <- 2 * (logLik(randomML) - logLik(ols))[1]

ML

673.7

This test statistic should be approximately χ2 distrib-
uted as long aswe are not at the boundary of the parameter
space. When we test σ2

ν = 0 this is no longer the case. Nev-
ertheless. . .

par(mar = c(4, 4, 0, 0))

plot(function(x) dchisq(x, 1), 0, 2, ylab = expression(chi[1]^2))

http://www.kirchkamp.de/
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The χ2 p-value would be

pchisq(teststat, 1, lower = FALSE)

ML

1.583e-148

Let us bootstrap the distribution:

set.seed(125)

dev <- replicate(5000, {

by <- c(unlist(simulate(ols)))

bols <- lm(by ~ x, data = data)

brandom <- refit(randomML, by)

LL <- 2 * (logLik(brandom) - logLik(bols))[1]

c(LL = LL, pchisq = pchisq(LL, 1, lower = FALSE))

})

The bootstrapped distribution differs from the χ2 distribu-
tion:
par(mfrow = c(1, 2))

plot(ecdf(dev["pchisq.ML", ]), do.points = FALSE, verticals = TRUE,

xlab = "empirical p-value", main = "Random effects test")

abline(a = 0, b = 1, lty = 3)

plot(ecdf(dev["LL.ML", ]), do.points = FALSE, verticals = TRUE,

xlab = "test statistic", main = "Random effects test")
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We see that the assumption of a χ2 distribution is rather
conservative. If we manage to reject our Null (that there is
no random effect) based on the χ2 distribution, then we
can definitely reject it based on the bootstrapped distribu-
tion. We might actually accept the Null too often. Hence,
if we find a teststatistic which is still acceptable according
to the χ2 distribution (pooled OLS is ok), chances are that
we could reject this statistic with the bootstrapped distri-
bution.

We can, of course, use the bootstrapped value of the
teststatistic and compare it with the value from our test:

mean(teststat < dev["LL.ML", ])

[1] 0

Note that we need many bootstrap replications to get reli-
able estimates for p-values.

2.7.1 Confidence intervals for fixed effects

We can’t assume that estimated coefficients follow a nor-
mal distribution. To determine confidence intervals we
have to bootstrap a sample of coefficients.

random.mc <- mcmcsamp(random, bootstrapsize)

HPDinterval(random.mc)$fixef

lower upper

(Intercept) -8.0498 0.5548

x -0.2494 2.1356

attr(,"Probability")

[1] 0.95

Exercise 2.5 The file ex2.csv contains observations on x1, x2,
y and a group variable group. You are interested in how x1 and
x2 influence y.

• In the fixed effects model: Is the group specific effect signi-
ficant?

• In the random effects model: Is the group specific effect
significant?

• Use a Hausman test to compare the fixed and the random
effects model.

3 A mixed effects model with unrep-

licated design

The dataset dataM shows the result of a (hypothetical) ex-
periment where 20 different individuals i all solve 4 dif-

http://www.kirchkamp.de/
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ferent tasks x. The dependent variable y shows the time
needed by individual i for task x.

with(dataM, table(x, i))

i

x 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

par(mar = c(4, 4, 0, 0))

with(dataM, interaction.plot(x, i, y))
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One way to write the model:

yij = β j + νi + ǫij, i ∈ {1, . . . , 20}, j ∈ {1, . . . 4}

with νi ∼ N(0, σν) and ǫij ∼ N(0, σ)
An alternative way to write the model:

yi = X iβ + Ziνi + ǫi, i ∈ {1, . . . , 20}

with

yi =







yi1
yi2
yi3
yi4







,X i =







1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1







︸ ︷︷ ︸

cell means

,

Zi = I =







1
1
1
1







, ǫi =







ǫi1
ǫi2
ǫi3
ǫi4







Instead of using this specification, we could also use
any other matrix of full rank. Common are the following:

X i =







1 0 0 0
1 1 0 0
1 0 1 0
1 0 0 1







︸ ︷︷ ︸

reference

,







1 −1 −1 −1
1 1 −1 −1
1 0 2 −1
1 0 0 3







︸ ︷︷ ︸

Helmert

, or







1 1 0 0
1 0 1 0
1 0 0 1
1 −1 −1 −1







︸ ︷︷ ︸

sum

3.1 Estimation with different contrast
matrices

3.1.1 First category as a reference

The default in R (and in Stata) is to use the first category as
a reference.

data1 <- subset(dataM, i == 1)

mm <- model.matrix(y ~ x, data1)

as.data.frame(mm)

(Intercept) x2 x3 x4

1 1 0 0 0

2 1 1 0 0

3 1 0 1 0

4 1 0 0 1

• Asymmetric treatment of categories (The effect of the
first category is captured by the intercept. The effects
of the remaining three treatments are relative to the
intercept).

• x1, x2, and x3 are not orthogonal to the intercept.
Multiplied with the intercept the result is always dif-
ferent from zero.

as.data.frame(mm)

(Intercept) x2 x3 x4

1 1 0 0 0

2 1 1 0 0

3 1 0 1 0

4 1 0 0 1

Let us check non-orthogonality:

c(mm[, 1] %*% mm[, 2:4], mm[, 2] %*% mm[, 3:4], mm[,

3] %*% mm[, 4])

[1] 1 1 1 0 0 0

Here are the estimation results if we follow this ap-
proach:

http://www.kirchkamp.de/
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r.lmer <- lmer(y ~ x + (1 | i), data = dataM)

print(r.lmer, correlation = FALSE)

Linear mixed model fit by REML

Formula: y ~ x + (1 | i)

Data: dataM

AIC BIC logLik deviance REMLdev

282 296.3 -135 267.5 270

Random effects:

Groups Name Variance Std.Dev.

i (Intercept) 1.1599 1.0770

Residual 1.1697 1.0815

Number of obs: 80, groups: i, 20

Fixed effects:

Estimate Std. Error t value

(Intercept) 3.6697 0.3413 10.753

x2 -0.5980 0.3420 -1.748

x3 1.4924 0.3420 4.364

x4 3.5020 0.3420 10.240

as.data.frame(mm)

(Intercept) x2 x3 x4

1 1 0 0 0

2 1 1 0 0

3 1 0 1 0

4 1 0 0 1

Linear combinations of the coefficients have a meaning:
If we are, e.g. interested in the mean of the second cat-

egory, we add the intercept and the estimate of β2:

r.lmer@fixef %*% mm[2, ]

[,1]

[1,] 3.071748

3.1.2 Sum contrasts

Often it is interesting to immediately estimate an overall
mean effect and then add contrasts that describe difference
between treatments. Sum contrasts are one way to do this:

oldOpt <- getOption("contrasts")

options(contrasts = c(unordered = "contr.sum", ordered = "contr.poly"))

mm <- model.matrix(y ~ x, data1)

as.data.frame(mm)

(Intercept) x1 x2 x3

1 1 1 0 0

2 1 0 1 0

3 1 0 0 1

4 1 -1 -1 -1

as.data.frame(mm)

(Intercept) x1 x2 x3

1 1 1 0 0

2 1 0 1 0

3 1 0 0 1

4 1 -1 -1 -1

• Intercept: mean effect over all four treatments.

• Coefficient of x1: difference between the first and the
fourth treatment.

• Coefficient of x2: difference between the second and
the fourth treatment.

• Coefficient of x3: difference between the third and
the fourth treatment.

as.data.frame(mm)

(Intercept) x1 x2 x3

1 1 1 0 0

2 1 0 1 0

3 1 0 0 1

4 1 -1 -1 -1

Still, coefficients are not orthogonal.

c(mm[, 1] %*% mm[, 2:4], mm[, 2] %*% mm[, 3:4], mm[,

3] %*% mm[, 4])

[1] 0 0 0 1 1 1

Here are the estimation results if we follow this ap-
proach:

s.lmer <- lmer(y ~ x + (1 | i), data = dataM)

print(s.lmer, correlation = FALSE)

Linear mixed model fit by REML

Formula: y ~ x + (1 | i)

Data: dataM

AIC BIC logLik deviance REMLdev

284.8 299.1 -136.4 267.5 272.8

Random effects:

Groups Name Variance Std.Dev.

i (Intercept) 1.1599 1.0770

Residual 1.1697 1.0815

Number of obs: 80, groups: i, 20

Fixed effects:

Estimate Std. Error t value

(Intercept) 4.7689 0.2695 17.698

x1 -1.0991 0.2094 -5.248

x2 -1.6971 0.2094 -8.103

x3 0.3933 0.2094 1.878

as.data.frame(mm)

(Intercept) x1 x2 x3

1 1 1 0 0

2 1 0 1 0

3 1 0 0 1

4 1 -1 -1 -1

Linear combinations of the coefficients have a meaning:
If we are, e.g. interested in the mean of the second cat-

egory, we add the intercept and the estimate of β2:

s.lmer@fixef %*% mm[2, ]

[,1]

[1,] 3.071748
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3.1.3 Helmert contrasts

Helmert contrasts are another way to do this.

options(contrasts = c(unordered = "contr.helmert", ordered = "contr.poly"))

mm <- model.matrix(y ~ x, data1)

as.data.frame(mm)

(Intercept) x1 x2 x3

1 1 -1 -1 -1

2 1 1 -1 -1

3 1 0 2 -1

4 1 0 0 3

• Intercept: mean effect over all four treatments.

• Coefficient of x1: difference between the second and
the first treatment.

• Coefficient of x2: difference between the third and
the mean of the first two.

• Coefficient of x3: difference between the fourth and
the mean of the other three.

as.data.frame(mm)

(Intercept) x1 x2 x3

1 1 -1 -1 -1

2 1 1 -1 -1

3 1 0 2 -1

4 1 0 0 3

Furthermore, all variables are now uncorrelated.

c(mm[, 1] %*% mm[, 2:4], mm[, 2] %*% mm[, 3:4], mm[,

3] %*% mm[, 4])

[1] 0 0 0 0 0 0

Here are the estimation results based on Helmert con-
trasts.

h.lmer <- lmer(y ~ x + (1 | i), data = dataM)

print(h.lmer, correlation = FALSE)

Linear mixed model fit by REML

Formula: y ~ x + (1 | i)

Data: dataM

AIC BIC logLik deviance REMLdev

288.4 302.7 -138.2 267.5 276.4

Random effects:

Groups Name Variance Std.Dev.

i (Intercept) 1.1599 1.0770

Residual 1.1697 1.0815

Number of obs: 80, groups: i, 20

Fixed effects:

Estimate Std. Error t value

(Intercept) 4.76886 0.26946 17.698

x1 -0.29900 0.17100 -1.748

x2 0.59715 0.09873 6.048

x3 0.80097 0.06981 11.473

options(contrasts = oldOpt)

as.data.frame(mm)

(Intercept) x1 x2 x3

1 1 -1 -1 -1

2 1 1 -1 -1

3 1 0 2 -1

4 1 0 0 3

It is still possible to calculate the mean effect of, e.g. the
second treatment:

h.lmer@fixef %*% mm[2, ]

[,1]

[1,] 3.071748

3.1.4 Cell means contrasts

If we are not primarily interested in the overall mean effect,
then cell means are a possibility:

mm <- model.matrix(y ~ x - 1, data1)

as.data.frame(mm)

x1 x2 x3 x4

1 1 0 0 0

2 0 1 0 0

3 0 0 1 0

4 0 0 0 1

Now the four coefficients reflect the average effect of
the four categories.

Here is the estimation result for cell means:

cm.lmer <- lmer(y ~ x - 1 + (1 | i), data = dataM)

print(cm.lmer, correlation = FALSE)

Linear mixed model fit by REML

Formula: y ~ x - 1 + (1 | i)

Data: dataM

AIC BIC logLik deviance REMLdev

282 296.3 -135 267.5 270

Random effects:

Groups Name Variance Std.Dev.

i (Intercept) 1.1599 1.0770

Residual 1.1697 1.0815

Number of obs: 80, groups: i, 20

Fixed effects:

Estimate Std. Error t value

x1 3.6697 0.3413 10.753

x2 3.0717 0.3413 9.001

x3 5.1622 0.3413 15.126

x4 7.1718 0.3413 21.014

as.data.frame(mm)

x1 x2 x3 x4

1 1 0 0 0

2 0 1 0 0

3 0 0 1 0

4 0 0 0 1

It is still possible to calculate the mean effect of, e.g. the
second treatment:

cm.lmer@fixef %*% mm[2, ]

[,1]

[1,] 3.071748
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3.2 Which statistics are affected by the type of
contrasts?

3.2.1 t-statistics and p-values

As we see above, t-statistics (and, hence, p-values) de-
pend very much on the way how the fixed effect enters the
model. We should not use these statistics when we assess
the influence of the factor.

models <- list(reference = r.lmer, sum = s.lmer, helmert = h.lmer,

cellmeans = cm.lmer)

sapply(models, function(model) summary(model)@coefs[,

"t value"])

reference sum helmert cellmeans

(Intercept) 10.752786 17.697531 17.697537 10.752786

x2 -1.748497 -5.248044 -1.748497 9.000591

x3 4.363820 -8.103327 6.048400 15.125835

x4 10.239706 1.878044 11.473327 21.014148

3.2.2 Anova

As long as we keep the intercept, the anova is not affected.
We should use the anova (with an intercept term) when we
assess the influce of the factor.

sapply(models, function(model) anova(model))

reference sum helmert cellmeans

Df 3 3 3 4

Sum Sq 200.3386 200.3386 200.3386 566.5205

Mean Sq 66.77953 66.77953 66.77953 141.6301

F value 57.09254 57.09254 57.09254 121.0854

The last representation (cellmeans) leads to a different
anova. The reason is that the latter model is tested against
β1 = β2 = β3 = β4 = 0 while the other two are only tested
against β1 = β2 = β3 = β4 = constant.

3.2.3 Information criteria

The change in the type of contrasts is a change in the fixed
effect, hence (with REML) changes the likelihood of the
model and, thus, also the AIC and BIC.

sapply(models, function(model) summary(model)@AICtab)

reference sum helmert cellmeans

AIC 282.0249 284.7975 288.3811 282.0249

BIC 296.3171 299.0897 302.6732 296.3171

logLik -135.0125 -136.3988 -138.1905 -135.0125

deviance 267.5197 267.5197 267.5197 267.5197

REMLdev 270.0249 272.7975 276.3811 270.0249

When we compare information criteria of different
models, we have to take the same type of contrasts — at
least as long as we use REML estimation.

With ML estimation the type of the contrasts does not
matter for information criteria:

sapply(models, function(model) summary(update(model,

REML = FALSE))@AICtab)

reference sum helmert cellmeans

AIC 279.5197 279.5197 279.5197 279.5197

BIC 293.8119 293.8119 293.8119 293.8119

logLik -133.7599 -133.7599 -133.7599 -133.7599

deviance 267.5197 267.5197 267.5197 267.5197

REMLdev 270.0249 270.0249 270.0249 270.0249

Likelihood ratio tests should, hence, be carried out with
ML, not with REML.

Exercise 3.1 The dataset ex3.csv contains three variables. g
controls for the treatment group, x is an independent variable,
and y is the dependent variable. You want to estimate

y = βx+
G

∑
g=1

dgγg + u

where dg is a dummy that is one for observations in group g and
zero otherwise.

1. Compare a simple OLS, a fixed effects, and a random ef-
fects model.

2. You are not primarily interested in the individual values of
γg but you want to estimate the average value of γg. What
is a simple way to obtain this in a fixed effects model?

3. How can you do this in a random effects model?

4. Compare the fixed effects with the random effects model
with a Hausman test.

5. Now you suspect the following relationship:

y = γ +
G

∑
i=0

dgβgx+ u .

Again, you are not interested in the individual values of
βg but you want to estimate an average effect. Compare
the results of a fixed and random effects model.

4 Testing fixed effects

To test a fixed effect we can not use REML as an estimation
procedure.

4.1 Anova

r.lmerML <- update(r.lmer, REML = FALSE)

r.lmerMLsmall <- update(r.lmerML, . ~ . - x)

r.anova <- anova(r.lmerMLsmall, r.lmerML)

r.anova

Data: dataM

http://www.kirchkamp.de/
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Models:

r.lmerMLsmall: y ~ (1 | i)

r.lmerML: y ~ x + (1 | i)

Df AIC BIC logLik Chisq Chi Df Pr(>Chisq)

r.lmerMLsmall 3 357.13 364.28 -175.56

r.lmerML 6 279.52 293.81 -133.76 83.61 3 < 2.2e-16 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Let us checkwhether the assumption of a χ2 distributed
test statistic, which is made by anova, is really justified.

set.seed(123)

empirP <- replicate(500, {

r.lmerSim <- lmer(y ~ sample(x) + (1 | i), data = dataM,

REML = FALSE)

a <- anova(r.lmerMLsmall, r.lmerSim)

c(Chisq = a[["Chisq"]][2], df = a[["Chi Df"]][2],

pval = a[["Pr(>Chisq)"]][2])

})

par(mar = c(4, 4, 0, 0))

plot(ecdf(empirP["pval", ]), do.points = FALSE, verticals = TRUE,

xlab = "empirical p-value", main = "")

abline(a = 0, b = 1, lty = 2)
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The empirical frequency to get the χ2 statistic we got above
under the Null is

mean(r.anova[["Chisq"]][2] < empirP["Chisq", ])

[1] 0

So far everything looks good. For the dataset PBIB1

(provided by the library(SASmixed)) things do not work
out so well.

library(SASmixed)

data(PBIB)

Here is the anova for PBIB:

l.small <- lmer(response ~ 1 + (1 | Block), data = PBIB,

REML = FALSE)

l.large <- lmer(response ~ sample(Treatment) + (1 | Block),

data = PBIB, REML = FALSE)

pbib.anova <- anova(l.large, l.small)

pbib.anova

Data: PBIB

Models:

l.small: response ~ 1 + (1 | Block)

l.large: response ~ sample(Treatment) + (1 | Block)

Df AIC BIC logLik Chisq Chi Df Pr(>Chisq)

l.small 3 52.152 58.435 -23.0759

l.large 17 52.082 87.686 -9.0412 28.070 14 0.01393 *

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Now we bootstrap the distribution of the empirical p-
values, provided that Treatment is entirely random:

empirP <- replicate(500, {

l.largeSim <- lmer(response ~ sample(Treatment) +

(1 | Block), data = PBIB, REML = FALSE)

a <- anova(l.small, l.largeSim)

c(Chisq = a[["Chisq"]][2], df = a[["Chi Df"]][2],

pval = a[["Pr(>Chisq)"]][2])

})

par(mar = c(4, 4, 0, 0))

plot(ecdf(empirP["pval", ]), do.points = FALSE, verticals = TRUE,

xlab = "empirical p-value", main = "")

abline(a = 0, b = 1, lty = 2)
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The empirical frequency to get the χ2 statistic we got
above under the Null is

mean(pbib.anova[["Chisq"]][2] < empirP["Chisq", ])

[1] 0.056

With the help of anova, how often would we obtain
an empirical p-value smaller 5%, if the variable Treatment
does not matter at all?

mean(empirP["pval", ] < 0.05) * 100

[1] 14.8

1Littel, R. C., Milliken, G. A., Stroup, W. W., and Wolfinger, R. D. (1996), SAS System for Mixed Models, SAS Institute (Data Set 1.5.1)
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4.2 Confidence intervals

Let us have a look at the dataset data3. It is similar to data,
except that now we have two fixed effects, x1 and x2.

random <- lmer(y ~ x1 + x2 + (1 | i), data = data3)

mcmcsamp generates a sample from the posterior distri-
bution of parameters.

random.boot <- mcmcsamp(random, bootstrapsize)

par(mar = c(4, 4, 0, 0))

plot(t(random.boot@fixef[2:3, ]))
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HPDinterval generates confidence intervals.

HPDinterval(random.boot)$fixef

lower upper

(Intercept) -2.1572418 3.995950

x1 -0.5473138 3.663168

x2 -1.6742225 2.000468

attr(,"Probability")

[1] 0.95

Functions of coefficients We can use the mcmc-Sample
to look at linear functions of coefficients. Assume that in
the above example we are interested in βx1 − βx2 .

x12diff <- with(as.data.frame(t(random.boot@fixef)),

x1 - x2)

plot(density(x12diff))
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Again, we can use HPDinterval to calculate confidence
intervals.

HPDinterval(as.matrix(x12diff))

lower upper

[1,] -0.8372966 5.633797

attr(,"Probability")

[1] 0.95

4.3 Testing random effects

See section 2.7 above.

Exercise 4.1 You look again at the ex3.csv (see exercise 3.1)
and at the following model

y = βx+
G

∑
g=1

dgγg + u

where dg is a dummy that is one for observations in group g and
zero otherwise.

1. In a model with fixed effects for g: Does one have to include
the fixed effect? Give a confidence interval for the average
value (over groups g) of γg.

2. In a model with random effects for g: Does one have to in-
clude the random effect? Give a confidence interval for the
average value (over groups g) of γg.

3. Now do the same for the following model:

y = γ +
G

∑
i=0

dgβgx+ u .
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5 Mixing fixed and random effects

A common situation in economic experiments is that dif-
ferent groups of participants are associated with different
treaments. To measure the size of the treatment effect we
want to introduce a fixed effect for the treatment. Can we
also introduce a random effect for the groups (which are
nested in the treatments)?

The dataset ex4.csv contains observations on a hypo-
thetical experiment with 3 treatments and 108 participants
in 9 groups. Each group contains 12 participants. Each
participants stays for 10 periods in the experiment. Each
group participates in only one treatment. Since parti-
cipants within a group interact over these 10 periods we
suspect that observations within a group are correlated.

ex4 <- read.csv("ex4.csv")

ex4[1:20, ]

treat group pid period y

1 A 1 1 1 11.2

2 A 1 1 2 11.3

3 A 1 1 3 11.2

4 A 1 1 4 11.1

5 A 1 1 5 11.4

6 A 1 1 6 10.5

7 A 1 1 7 11.0

8 A 1 1 8 10.3

9 A 1 1 9 10.4

10 A 1 1 10 10.1

11 A 1 2 1 12.7

12 A 1 2 2 12.9

13 A 1 2 3 12.0

14 A 1 2 4 12.6

15 A 1 2 5 12.2

16 A 1 2 6 12.2

17 A 1 2 7 12.2

18 A 1 2 8 11.4

19 A 1 2 9 12.2

20 A 1 2 10 12.0

Now let us estimate the treatment effect of treat and in-
clude a random effect for the group as well as a random
effect for the participants pid.

r.mer <- lmer(y ~ treat - 1 + (1 | group) + (1 | pid),

data = ex4)

fixef(r.mer)

treatA treatB treatC

12.163889 4.458611 8.693056

R calculates two random effects, random effects for parti-
cipants and for groups. Furthermore we have the estim-
ated residuals.

str(ranef(r.mer))

List of 2

$ pid :'data.frame': 108 obs. of 1 variable:

..$ (Intercept): num [1:108] -0.51 0.85 0.155 0.409 -1.215 ...

$ group:'data.frame': 9 obs. of 1 variable:

..$ (Intercept): num [1:9] -0.7924 0.1581 0.6013 0.0543 0.4339 ...

- attr(*, "class")= chr "ranef.mer"

str(residuals(r.mer))

num [1:1080] 0.339 0.439 0.339 0.239 0.539 ...

Here is the density of the estimated random effects and re-
siduals:

par(mfrow = c(1, 3))

plot(density(unlist(ranef(r.mer)[["pid"]])))

plot(density(unlist(ranef(r.mer)[["group"]])))

plot(density(residuals(r.mer)))
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Exercise 5.1 Have another look at the dataset ex4.csv. You
suspect that behaviour in the experiment changes over time
(period).

1. Do you think that there is such an effect?

2. Is the effect linear?

3. Assume that the effect is linear, can you give a confidence
interval for the size of the effect?

4. Is the magniture of the effect the same for all treatments?

6 A mixed effects model with replic-

ated design

The dataset dataMR shows the result of a (hypothetical) ex-
periment where 20 different individuals i all solve 3 dif-
ferent tasks x. The dependent variable y shows the time
needed by individual i for task x. In contrast to the exper-
iment shown in dataM in this experiment participants took
each task 4 times.

with(dataMR, table(x, i))

i

x 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

6.1 A model with one random effect

Let us compare residuals for each individual for an OLS
with a random effects model:

http://www.kirchkamp.de/


©
O
li
v
er

K
ir
ch

k
a
m
p

Mixed Effects — 6 A MIXED EFFECTS MODELWITH REPLICATED DESIGN [ 29th September 2010, 18:37 ] — 17

ols <- lm(y ~ x, data = dataMR)

boxplot(residuals(ols) ~ i,

data = dataMR, main = "OLS")
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m1.lmer <- lmer(y ~ x + (1 |

i), data = dataMR)

boxplot(residuals(m1.lmer) ~

i, data = dataMR, main = "Random effects")

1 3 5 7 9 11 13 15 17 19

−
3

−
2

−
1

0
1

2
3

Random effects

Visual comparison:

• heterogeneity among individuals

Alternative:

• Calculate the difference between the likelihoods of
the two models and then bootstrap the distribution
as we did above.

Here we look at another problem. So far we have a ran-
dom effect for the intercept only.

yij = β j + νi + ǫij, i ∈ {1, . . . , 20}, j ∈ {1, . . . 3}

with νi ∼ N(0, σν) and ǫij ∼ N(0, σ)
The result was

summary(m1.lmer)

Linear mixed model fit by REML

Formula: y ~ x + (1 | i)

Data: dataMR

AIC BIC logLik deviance REMLdev

819.5 836.9 -404.7 805.5 809.5

Random effects:

Groups Name Variance Std.Dev.

i (Intercept) 1.6796 1.2960

Residual 1.3501 1.1620

Number of obs: 240, groups: i, 20

Fixed effects:

Estimate Std. Error t value

(Intercept) 1.59859 0.31756 5.034

x2 0.01165 0.18372 0.063

x3 2.00393 0.18372 10.907

Correlation of Fixed Effects:

(Intr) x2

x2 -0.289

x3 -0.289 0.500

6.2 Random effects for interactions

Is the above enough? Could it be that the effect of x itself
varies with i, i.e. that we have to consider an interaction
between x and i for the random effect?

par(mar = c(4, 4, 0, 0))

with(dataMR, interaction.plot(x, i, y, legend = FALSE))
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The graph suggests that individuals i react differently
to treatments x.

We estimate the following random effects model:

yij = β j + νi + νij + ǫijk,

i ∈ {1, . . . , 20}, j ∈ {1, . . . 3}, k ∈ {1, . . . 4}

with νi ∼ N(0, σν), νij ∼ N(0, σν′), and ǫij ∼ N(0, σ)

m2.lmer <- lmer(y ~ x + (1 | i) + (1 | i:x), data = dataMR)

An equivalent (more compact) notation is the following:

m2.lmer <- lmer(y ~ x + (1 | i/x), data = dataMR)

m2.lmer

http://www.kirchkamp.de/
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We could now use anova to compare the two models,
although we can not be really sure whether the test statist-
ics is really χ2 distributed.

(anovaResult <- anova(m1.lmer, m2.lmer))

Data: dataMR

Models:

m1.lmer: y ~ x + (1 | i)

m2.lmer: y ~ x + (1 | i) + (1 | i:x)

Df AIC BIC logLik Chisq Chi Df Pr(>Chisq)

m1.lmer 5 815.48 832.89 -402.74

m2.lmer 6 813.87 834.76 -400.94 3.6098 1 0.05744 .

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Bootstrapping the distribution of the teststatistic we
find that the approximation with the χ2 distribution is not
too bad. Again, a χ2 test will usually be too conservative.

set.seed(125)

dev <- replicate(bootstrapsize, {

by <- c(simulate(m1.lmer))

b1 <- refit(m1.lmer, by)

b2 <- refit(m2.lmer, by)

2 * (logLik(b2) - logLik(b1))[1]

})

par(mar = c(4, 4, 0, 0))

qqplot(qchisq((1:bootstrapsize)/(bootstrapsize + 1),

df = 1), dev, xlab = expression(chi[1]^2), asp = 1)

abline(a = 0, b = 1)

cat("p=", mean(anovaResult$Chisq[2] < dev))

p= 0.04
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6.3 Interactions and replications

yij = β j + νi + νij + ǫijk,

i ∈ {1, . . . , 20}, j ∈ {1, . . . 3}, k ∈ {1, . . . 4}

We need some replications k in order to distinguish
between νij and ǫijk. The design need not be balanced,
though.

6.4 More random interactions

yij = β j + νi + νij + ǫijk,

i ∈ {1, . . . , 20}, j ∈ {1, . . . 3}, k ∈ {1, . . . 4}

In the above model we have made the following as-
sumptions:

• All random interactions have the same variance σν′

• All random interaction terms are independent.

This is a strong assumption. For any individual i it
requires that the νij are uncorrelated.

A more general model is the following:

yi = X iβ + Zibi + ǫi, i ∈ {1, . . . , 20}

with bi ∼ N(0,Ψ), ǫ ∼ N(0, σ2I) and Ψ3×3 symmetric
and positive definite.

Here is our X i matrix, for a representative individual
i=1:

dataMR1 <- subset(dataMR, i == 1)

as.data.frame(model.matrix(y ~ x, data = dataMR1))

(Intercept) x2 x3

1 1 0 0

2 1 0 0

3 1 0 0

4 1 0 0

5 1 1 0

6 1 1 0

7 1 1 0

8 1 1 0

9 1 0 1

10 1 0 1

11 1 0 1

12 1 0 1

Note that random effects should have a mean of 0, any-
way. Hence, there is no need to use contrast matrices which
show averages of random effects. The simplest is the cell
means specification for Zi.

as.data.frame(model.matrix(~x - 1, data = dataMR1))

x1 x2 x3

1 1 0 0

2 1 0 0

3 1 0 0

4 1 0 0

5 0 1 0

6 0 1 0

7 0 1 0

8 0 1 0

9 0 0 1

10 0 0 1

11 0 0 1

12 0 0 1

(m3.lmer <- lmer(y ~ x + (x - 1 | i), data = dataMR))

http://www.kirchkamp.de/


©
O
li
v
er

K
ir
ch

k
a
m
p

Mixed Effects — 7 RANDOM EFFECTS FOR MORE THAN A CONSTANT [ 29th September 2010, 18:37 ] — 19

Linear mixed model fit by REML

Formula: y ~ x + (x - 1 | i)

Data: dataMR

AIC BIC logLik deviance REMLdev

809.6 844.4 -394.8 785.9 789.6

Random effects:

Groups Name Variance Std.Dev. Corr

i x1 1.1354 1.0656

x2 1.2365 1.1120 0.966

x3 3.1816 1.7837 0.915 0.988

Residual 1.1851 1.0886

Number of obs: 240, groups: i, 20

Fixed effects:

Estimate Std. Error t value

(Intercept) 1.59859 0.26756 5.975

x2 0.01165 0.18380 0.063

x3 2.00393 0.26740 7.494

Correlation of Fixed Effects:

(Intr) x2

x2 -0.292

x3 0.215 0.517

We see that the estimated standard deviations of the
random effects differ among treatments and are highly cor-
related. We can compare the three models with the help of
an anova.

anova(m1.lmer, m2.lmer, m3.lmer)

Data: dataMR

Models:

m1.lmer: y ~ x + (1 | i)

m2.lmer: y ~ x + (1 | i) + (1 | i:x)

m3.lmer: y ~ x + (x - 1 | i)

Df AIC BIC logLik Chisq Chi Df Pr(>Chisq)

m1.lmer 5 815.48 832.89 -402.74

m2.lmer 6 813.87 834.76 -400.94 3.6098 1 0.057440 .

m3.lmer 10 805.85 840.66 -392.93 16.0225 4 0.002989 **

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The improvement in the log-likelihood is significant.
Also the AIC would suggest that introdicing more para-
meters (as Ψ) is worth the effort. The BIC puts a higher
penality on the additional parameters and would, hence,
prefer the first model.

Exercise 6.1 The dataset ex5.csv contains 8 variables. The
treatment is coded as treatment, the id of the participant is
stored in participant. Participants have different height,
profession, and gender. Further controls are x1 and x2. You
are interested in the effect of treatment. Compare the following:

1. A (pooled) OLS model where you do not control for hetero-
geneity of participants (but you control for gender, height
and profession),

2. a fixed effects model where you include a fixed effect for
each participant,

3. a mixed model with a random effect for participants.

What is the expected treatment effect from B to C for a female,
white collar worker of medium height? Can you give a confid-
ence interval?

7 Random effects for more than a con-

stant

7.1 Models we studied so far

yij = β j + νi + ǫij, i ∈ {1, . . . , 20}, j ∈ {1, . . . 4}

yij = β j + νi + νij + ǫijk, i ∈ {1, . . . , 20},

j ∈ {1, . . . 4}, k ∈ {1, . . . 3}

yi = X iβ + Zibi + ǫi, i ∈ {1, . . . , 20}

In the previous examples, X and Z contained only treat-
ment effects.

What, if X and Z also contain a linear variable, like a
valuation, a cost, or time expired during the experiment?

Let us, in a first step, add a linear factor xi to this model.

yi = β1 + β2xi + ǫi, i ∈ {1, . . . , 20}, ǫi ∼ N(0, σ2)

yij = β1 + β2xi + νi + ǫij,

i ∈ {1, . . . , 20}, j ∈ {1, . . . 4}

νi ∼ N(0, σ2
ν), ǫij ∼ N(0, σ2)

The dataset dataII contains information about 20 indi-
viduals which were divided into two groups. One of the
two groups got treatment a (shown as a + in the graph),
the other not (shown as a ◦).

par(mfrow = c(4, 5), mar = c(0, 0, 0, 0))

qq <- with(dataII, sapply(unique(i), function(j) {

plot(y ~ x, ylim = range(y), xlim = range(x), subset = i ==

j)

}))
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The figure suggests some systematic differences among
participants i. Let us first estimate one OLS model for each
participant.

ols.list <- lmList(y ~ x | i, data = dataII)

aM <- with(dataII, aggregate(a, list(i), median))[, 2]

The following two graphs shows estimated confidence
intervals for the coefficients. The left shows intervals for
the above regression, the right shows intervals for a regres-
sion where x enteres “demeaned”.

library(nlme)

iL <- intervals(ols.list)

attr(iL, "groupsName") <- "Subj."

print(plot(iL))
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meanx <- mean(dataII$x)

ols2.list <- lmList(y ~ I(x -

meanx) | i, data = dataII)

iL <- intervals(ols2.list)

attr(iL, "groupsName") <- "Subj."

print(plot(iL))
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I(x − meanx)

We see that scaling of the independent variable x has a
considerable impact on the intervals for the intercept. Con-
fidence intervals for x (or the demeaned version of x are not
affected.

We do this exercise here to show that scaling the inde-
pendent variables is not innocent. Here we will continue
without scaling.

The above figure already suggests some randomness in
the coefficient of x.

We compare the following models:

yij = β1 + β2xi + νi + ǫij

νi ∼ N(0, σ2
ν), ǫij ∼ N(0, σ2)

yij = β1 + (β2 + ν′i)xi + νi + ǫij

ν′i ∼ N(0, σ2
ν′), νi ∼ N(0, σ2

ν), ǫij ∼ N(0, σ2)

Let us start with the first model:

(r1.lmer <- lmer(y ~ x * a + (1 | i), data = dataII))

Linear mixed model fit by REML

Formula: y ~ x * a + (1 | i)

Data: dataII

AIC BIC logLik deviance REMLdev

3653 3678 -1820 3639 3641

Random effects:

Groups Name Variance Std.Dev.

i (Intercept) 221.760 14.8916

Residual 97.974 9.8982

Number of obs: 480, groups: i, 20

Fixed effects:

Estimate Std. Error t value

(Intercept) 0.578952 4.887328 0.118

x -0.005281 0.022644 -0.233

aTRUE -1.107130 6.920993 -0.160

x:aTRUE 0.250553 0.032874 7.622

Correlation of Fixed Effects:

(Intr) x aTRUE

x -0.234

aTRUE -0.706 0.165

x:aTRUE 0.161 -0.689 -0.239

Now we estimate the second, a “multilevel” mixed ef-
fects model (with a random effect on the intercept but also
on x).

(r2.lmer <- lmer(y ~ x * a + (x + 1 | i), data = dataII))

Linear mixed model fit by REML

Formula: y ~ x * a + (x + 1 | i)

Data: dataII

AIC BIC logLik deviance REMLdev

3055 3088 -1519 3035 3039

Random effects:

Groups Name Variance Std.Dev. Corr

i (Intercept) 7.4473e-11 0.0000086298

x 8.9713e-02 0.2995220532 0.000

Residual 2.6063e+01 5.1051589141

Number of obs: 480, groups: i, 20

Fixed effects:

Estimate Std. Error t value

(Intercept) 0.217634 0.677379 0.321

x 0.005387 0.095453 0.056

aTRUE -0.674196 0.967777 -0.697

x:aTRUE 0.233632 0.135033 1.730

Correlation of Fixed Effects:

http://www.kirchkamp.de/


©
O
li
v
er

K
ir
ch

k
a
m
p

Mixed Effects — 8 NONLINEARMODELS [ 29th September 2010, 18:37 ] — 21

(Intr) x aTRUE

x -0.108

aTRUE -0.700 0.076

x:aTRUE 0.076 -0.707 -0.110

For the second model, let us calculate the slopes and inter-
cepts of the best predictor for each individual:

aa1 <- r1.lmer@fixef["(Intercept)"] + aM * r1.lmer@fixef["aTRUE"] +

r1.lmer@ranef

bb1 <- r1.lmer@fixef["x"] + aM * r1.lmer@fixef["x:aTRUE"]

aa2 <- r2.lmer@fixef["(Intercept)"] + aM * r2.lmer@fixef["aTRUE"] +

r2.lmer@ranef[1:20]

bb2 <- r2.lmer@fixef["x"] + aM * r2.lmer@fixef["x:aTRUE"] +

r2.lmer@ranef[21:40]

myPlot <- function(aa, bb) {

par(mfrow = c(4, 5), mar = c(0, 0, 0, 0))

qq <- with(dataII, sapply(unique(i), function(j) {

plot(y ~ x, ylim = range(y), xlim = range(x),

subset = i == j)

abline(a = aa[j], b = bb[j])

}))

}

The following graph shows the predicted values for
each individual.

random effect only for intercept:

myPlot(aa1, bb1)
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random effect for intercept and x:

myPlot(aa2, bb2)
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Visual inspection suggests that the second model,
which includes a random effect for x in addition to the
random effect for the intercept, is more appropriate. More
formally, we compare the two models with anova.

anova(r1.lmer, r2.lmer)

Data: dataII

Models:

r1.lmer: y ~ x * a + (1 | i)

r2.lmer: y ~ x * a + (x + 1 | i)

Df AIC BIC logLik Chisq Chi Df Pr(>Chisq)

r1.lmer 6 3651.1 3676.1 -1819.5

r2.lmer 8 3051.2 3084.6 -1517.6 603.9 2 < 2.2e-16 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Exercise 7.1 Have another look at the dataset ex5.csv. Now
you suspect that the effect of x1might depend on the participant.
Compare the following three models:

• a model where participant only affects the intercept,

• a model where participant only affects the slope of x1,

• a model where participant affects the slope of x1 and the
intercept.

Which of these models do you prefer? Test formally!

8 Nonlinear models

As in section 2.2 we create an example dataset. The differ-
ence is that y is now a binary variable.

data <- read.csv("ex8.csv")

Y = 1 ⇔ x+ νi + ǫik > crit

True relationship:

Pr(Y = 1|x) = F(x, β, ν)

8.1 Pooled linear regression

plot(y ~ x, data = data, col = i)

est.lm <- lm(y ~ x, data = data)

abline(est.lm)
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8.2 Pooled logistic regression

Y = 1 ⇔ x+ ǫik > crit

Pr(Y = 1|x) = F(x, β)

data <- data[with(data, order(x, i)), ]

est.logit <- glm(y ~ x, family = binomial(link = "logit"),

data = data)

summary(est.logit)

Call:

glm(formula = y ~ x, family = binomial(link = "logit"), data = data)

Deviance Residuals:

Min 1Q Median 3Q Max

-2.39122 0.02146 0.09098 0.44228 2.02723

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -2.2184 0.3855 -5.755 8.67e-09 ***

x 10.7891 1.4060 7.674 1.67e-14 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 330.65 on 299 degrees of freedom

Residual deviance: 175.75 on 298 degrees of freedom

AIC: 179.75

Number of Fisher Scoring iterations: 7

plot(y ~ x, data = data, col = i)

lines(fitted(est.logit) ~ x, data = data)
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8.3 Clustered logistic regression

data.oi <- data[order(data$i), ]

est.cluster <- geeglm(y ~ x, id = i, family = binomial(link = "logit"),

data = data.oi)

summary(est.cluster)

Call:

geeglm(formula = y ~ x, family = binomial(link = "logit"), data = data.oi,

id = i)

Coefficients:

Estimate Std.err Wald Pr(>|W|)

(Intercept) -2.2184 0.7862 7.962 0.00478 **

x 10.7891 2.2654 22.682 0.00000191 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Estimated Scale Parameters:

Estimate Std.err

(Intercept) 0.613 0.7655

Correlation: Structure = independenceNumber of clusters: 6 Maximum cluster size:

8.4 Non-parametric Wilcoxon test

estBetax <- sapply(by(data, list(i = data$i), function(data) glm(y ~

x, family = binomial(link = "logit"), data = data)),

coef)["x", ]

a b c d

32.235175970981 63.025582125904 -0.000000008405 40.055780646282

e f

97.119552216386 49.095677913257

wilcox.test(estBetax)

Wilcoxon signed rank test

data: estBetax

V = 20, p-value = 0.0625

alternative hypothesis: true location is not equal to 0

8.5 Fixed effects

Y = 1 ⇔ x+ di + ǫik > crit
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est.fixed <- glm(y ~ x + i, family = binomial(link = "logit"),

data = data)

summary(est.fixed)

Call:

glm(formula = y ~ x + i, family = binomial(link = "logit"), data = data)

Deviance Residuals:

Min 1Q Median 3Q

-1.9025192211 0.0000000211 0.0000068046 0.0021905912

Max

1.8557222640

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -18.86 4.41 -4.27 0.000019 ***

x 44.06 10.19 4.32 0.000015 ***

ib 2.16 1.26 1.71 0.08691 .

ic 34.40 2456.85 0.01 0.98883

id 10.56 2.73 3.87 0.00011 ***

ie 13.54 3.23 4.20 0.000027 ***

if 14.08 3.50 4.03 0.000056 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 330.648 on 299 degrees of freedom

Residual deviance: 46.301 on 293 degrees of freedom

AIC: 60.3

Number of Fisher Scoring iterations: 20

plot(y ~ x, data = data, col = i)

qq <- sapply(c(coef(est.fixed)[-1:-2], 0), function(z) lines(plogis(cbind(1,

data$x) %*% coef(est.fixed)[1:2] + z) ~ data$x))
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8.6 Random effects

Y = 1 ⇔ x+ νi + ǫik > crit

est.mer <- glmer(y ~ x + (1 | i), family = binomial(link = "logit"),

data = data)

est.mer

Generalized linear mixed model fit by the Laplace approximation

Formula: y ~ x + (1 | i)

Data: data

AIC BIC logLik deviance

81.3 92.4 -37.7 75.3

Random effects:

Groups Name Variance Std.Dev.

i (Intercept) 40.1 6.33

Number of obs: 300, groups: i, 6

Fixed effects:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -7.31 3.08 -2.38 0.017 *

x 37.87 7.45 5.08 0.00000037 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Correlation of Fixed Effects:

(Intr)

x -0.520

plot(y ~ x, data = data, col = i)

lines(fitted(est.logit) ~ x, data = data, lty = 2)

lines(plogis(cbind(1, x) %*% cbind(fixef(est.mer))) ~

x, data = data, col = "red")

legend("bottomright", c("pooled", "random"), lty = c(2,

1))
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Exercise 8.1 The dataset in ex8b.csv contains data from a hy-
pothetical study. We want to investigate how a control variable
x1 affects an outcome which can be either good or bad. We have
several observations for each participant.

1. Estimate a pooled logistic model.

2. Estimate a logistic model with fixed effects for each parti-
cipant.

3. Estimate a logistic model with a random effect for each par-
ticipant. Compare the three models.

4. Does x1 has an effect? Can you suggest a nonparametric
test?
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9 Sample size

Before we run an experiment it would often be helpful to
know something about the needed sample size. If we have
at least some idea about the data generating process this
can be done.

For a simple data generating processes there are formu-
las.

For more complicated ones we can simulate.

Let us assume we to investigate the impact of a stim-
ulus on contribution in a public good game with random
matching. The size of the interaction group is 4, the size of
the matching group is 12, the experiment lasts for 10 peri-
ods. The endowment is between 0 and 10. From other ex-
periments we expect an initial contribution of about 5 with
a standard deviation of 3. We expect the contribution to
decay by 0.2 units with a standard deviation of 1 from one
period to the next.

• Define parameters of the simulation

• A function player provides the data we get from a
single player:

• A function group combines a number of players to
form a group.

• A function groups combines groups into the (ran-
dom) experimental dataset.

• Apply random effects / Wilcoxon-Rank-Sum Test /
. . . to replicated versions of simulated datasets for ex-
periments of different sizes.

Let us first define the parameters of our simulation.

meanContrib <- 5

sdContrib <- 3

meanChange <- -0.2

sdChange <- 1

effectSize <- 0.5

minContrib <- 0

maxContrib <- 10

periods <- 10

groupSize <- 12

A function player provides the data we get from a
single player:

player <- function(pid = 1, gid = 1) {

x <- round(rnorm(1, mean = meanContrib, sd = sdContrib) +

rnorm(periods, mean = meanChange, sd = sdChange) +

ifelse(effect, effectSize, 0), 0)

cbind(gid = gid, pid = pid, period = 1:periods, contrib = pmin(pmax(minContrib,

x), maxContrib), effect = effect)

}

A function group combines a number of players to form a
group. Technically, we stack the players vertically, starting
from an empty (NULL) matrix.

group <- function(gid = 1) {

mGroupData <- NULL

qq <- sapply(1:groupSize, function(p) mGroupData <<- rbind(mGroupData,

player(p, gid)))

mGroupData

}

Now we create the data for the hypothetical experiment.

groups <- function(numGroups) {

allData <- NULL

effect <<- FALSE

sapply(1:(numGroups%/%2), function(gid) allData <<- rbind(allData,

group(gid)))

effect <<- TRUE

qq <- sapply((numGroups%/%2 + 1):numGroups, function(gid) allData <<- rbind(allData,

group(gid)))

as.data.frame(allData)

}

Let us first check whether our simulation worked:

xx <- groups(2)

with(xx, table(pid))

pid

1 2 3 4 5 6 7 8 9 10 11 12

20 20 20 20 20 20 20 20 20 20 20 20

with(xx, table(period))

period

1 2 3 4 5 6 7 8 9 10

24 24 24 24 24 24 24 24 24 24

with(xx, table(gid, effect))

effect

gid 0 1

1 120 0

2 0 120

This looks fine. Now it is time to write a small function that
calculates the statistics we care about for one simulated ex-
periment. Let us assume that we care about p-values.

oneSimul <- function(groupNum) {

xx <- groups(groupNum)

est.mer <- lmer(contrib ~ effect + (1 | pid) + (1 |

gid), data = xx)

2 * pnorm(abs(summary(est.mer)@coefs["effect", "t value"]),

lower = FALSE)

}

We use here t-statistics and assume that they follow a
normal distribution. As pointed out above, this is a crude
approximation. There are so many assumptions involved
in this simulation that the mistake introduced by assuming
normality is relatively small. The gain in computation time
is large.

set.seed(123)

pvals2 <- replicate(10, oneSimul(2))

pvals20 <- replicate(10, oneSimul(20))

plot(ecdf(pvals2), do.p = FALSE, verticals = TRUE)

lines(ecdf(pvals20), do.p = FALSE, verticals = TRUE,

lty = 2)

legend("bottomright", c("2 groups", "20 groups"), lty = 1:2,

bg = "white")
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Now let us assume that we are more conservative and
want to apply a Wilcoxon rank sum test.

oneSimul <- function(groupNum) {

xx <- groups(groupNum)

wdata <- aggregate(xx, list(xx$gid), mean)

wilcox.test(contrib ~ effect, data = wdata)$p.value

}

set.seed(123)

pvals2 <- replicate(10, oneSimul(2))

pvals20 <- replicate(10, oneSimul(20))

pvals50 <- replicate(10, oneSimul(50))

plot(ecdf(pvals2), do.p = FALSE, verticals = TRUE, xlim = c(0,

1))

lines(ecdf(pvals20), do.p = FALSE, verticals = TRUE,

lty = 2)

lines(ecdf(pvals50), do.p = FALSE, verticals = TRUE,

lty = 3)

legend("bottomright", c("2 groups", "20 groups", "50 groups"),

lty = 1:3, bg = "white")
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Exercise 9.1 You want to design a field experiment to test the ef-
fect of labour market qualification. Your dependent variable will
be the salaries of your participants during the next five years.
Each year you will have one observation for each participant. You
assume that the qualification program will lead to an increase of
the annual income of about 500$. You also assume that, within
a participant, the standard deviation on the income from year to
year is about 2 000$. Furthermore, you assume that across indi-
viduals the standard deviation of the income is about 20 000$.

1. Howmany participants do you need if 50% of your sample
will participate in the qualification program? Assume that
your significance level is 5%.

2. You know that you can put 300 participants into the qual-
ification treatment. You can put any number into the con-
trol treatment. Can you expect significant results? If so,
how large should your control group be?

10 Exercises

Exercise 10.1 The dataset exe1 from the attached file
me.Rdata provides data on a simple experiment. i denotes
the individual, x is some independent stimulus, y is the reaction
of the individual.

1. How many individuals are included? How many meas-
urements do we have per individual?

2. Estimate a pooled OLS, between OLS, clustered OLS, fixed
effects OLS, and a random effects OLS model. For each
model provide a confidence interval for βx. Also provide

a non parameteric test whether the marginal effect of x is
positive.

Exercise 10.2 Have a look at the data in exe2. The variable y
is the reaction of the individual player player to different treat-
ments treatment. The different periods are coded as period.

1. How many individuals are included? How many meas-
urements do we have per individual? How many measure-
ments do we have for each treatment?

2. What is the appropriate estimation procedure here?

3. Do you find any differences between treatments?
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4. Do you find any differences between players?

5. Do you find a time trend?

6. One of your hypotheses is that treatments 1 to 4 yield a

higher value of the dependent variable y. Can you confirm
this hypothesis? Give a confindence interval of an appro-
priate statistic?

http://www.kirchkamp.de/
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