
Exam Bayesian Methods
The exam will be available on 12. August 2017, 11:00.

Solutions will be submitted (sent via email to oliver@kirchkamp.de) 45 minutes after
the exam is on-line. A late submission penalty applies.

For all your answers write down (all) the commands you use to obtain these answers. Also
include the answers in a short form (for each question do not include more than one line of
output – usually your answer should just be one or two numbers).

1. Consider the following sample of x:

set.seed(123)
x <- rnorm(5,5,1)

Assume that x ∼ N(µ, 1) where N is the normal distribution. You compare three
models: µ1 = 3.8, µ2 = 4, µ3 = 6.

a) Explain briefly why using pseudopriors can help with model selection.
b) Discuss briefly whether pseudopriors can help here?

[[ They could not — once the model is selected there are no other parameters left. ]]

c) Assume a vague prior. How probable is each of these three models? Use jags to
estimate the posterior probability of each model.
[[ Please note that these three models are each determined by a single parameter
(µ). In the lecture we studied a more complicated case which involved estimating
a relationship between two variables. Here we have only a single variable (x), this
simplifies matters a lot. ]]

library(runjags)
library(coda)
c.model <- 'model {
for (i in 1:length(x)) {

x[i] ~ dnorm(mu[m],1)
}
m ~ dcat(modelProb)

}'
c.data<-list(x=x,modelProb=c(1,1,1),mu=c(3.8,4,6))
c.jags<-run.jags(c.model,c.data,monitor=c("m"))
with(data.frame(as.mcmc(c.jags)),table(m)/length(m))

## m
## 1 2 3
## 0.03205 0.12080 0.84715

2. Consider the following model for JAGS:
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’model {
for (i in 1:length(y)) {

y[i] ~ dnorm(mu[i],tau[K+1])
mu[i]<-inprod(beta+nu[,group[i]],X[i,])

}
for (k in 1:K) {

beta[k] ~ dnorm (0,.0001)
for (j in 1:max(group)) {

nu[k,j] ~ dnorm(0,tau[k])
}

}
for (k in 1:(K+1)) {

tau[k] ~ dgamma(m[k]^2/d[k]^2,m[k]/d[k]^2);
m[k] ~ dexp(1); d[k] ~ dexp(1);

}
}’

a) Which type of models can this JAGS model estimate?
[[ A model with K many random effects (one random effect for each fixed effect) ]]

b) When you call run.jags you can specify a data argument. What type of model
do you estimate when neither nu nor tau are included in this data argument.
[[ You include a random effect for each coefficient of the regression. (There is one
nu[k,] for each beta[k]). If nu is not restricted by data, then nu follows the
specification of the model, i.e. it can be a random effect. ]]

c) Now assume that with the data argument you include a matrix nu where
nu[1,]=NA and nu[-1,]=0 (i.e. the first column of nu is NA, all other columns
are zero). What model do you estimate now?
[[ You include a random effect only for the first coefficient of the regression (usually
the intercept). ]]

d) Can you achieve a similar result if you include a vector tau with your data ar-
gument (and not a matrix nu)?
[[ The vector tau should have length K+1. The first and the last element of tau
should be NA (i.e. we use the vague prior from the model), all other elements should
be set to a large value (e.g. 105, i.e. we assume the corresponding elements of nu to
be only slightly different from zero, hence the random effect almost vanish. ]]

3. Consider the following data:

x<-1:10
y<-pmax(x-5,0)
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y is censored from below at 0, i.e. when you observe y=0 you only know that the
underlying variable y ⩽ 0. For y>0 you know that y = y. With your data you
estimate the following:

y = β0 + β1x + u .

a) Write a model in JAGS to solve this problem.
intreg.model <- 'model {

for (i in 1:length(y)) {
y[i] ~ dnorm(inprod(beta,X[i,]),tau)
notCens[i] ~ dinterval(y[i],0)

}
for (k in 1:K) {

beta[k] ~ dnorm(0,.0001)
}
tau ~ dgamma(m^2/d^2,m/d^2);
m ~ dexp(1); d ~ dexp(1);

}'
int.data<-within(list(y=y,notCens=as.numeric(y>0),

X=cbind(1,x),K=2),y[!notCens]<-NA)
ini <- with(int.data,function(i) list(y=ifelse(notCens,NA,-1)))
run.jags(intreg.model,int.data,inits=ini,monitor="beta")

##
## JAGS model summary statistics from 20000 samples (chains = 2; adapt+burnin = 5000):
##
## Lower95 Median Upper95 Mean SD Mode MCerr MC%ofSD
## beta[1] -8.9551 -5.7183 -3.5707 -5.9332 1.3806 -5.5187 0.092367 6.7
## beta[2] 0.80377 1.0827 1.5001 1.1081 0.1743 1.0614 0.011583 6.6
##
## SSeff AC.10 psrf
## beta[1] 223 0.80464 1.0003
## beta[2] 226 0.78725 1.0009
##
## Total time taken: 0.4 seconds

b) You suspect that y contains outliers. How can you make the estimation of β
robust?
intreg2.model <- 'model {

for (i in 1:length(y)) {
y[i] ~ dt(inprod(beta,X[i,]),tau,df)
notCens[i] ~ dinterval(y[i],0)

}
for (k in 1:K) {

beta[k] ~ dnorm(0,.0001)
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}
tau ~ dgamma(m^2/d^2,m/d^2);
m ~ dexp(1); d ~ dexp(1);
df ~ dexp(1/30)

}'

run.jags(intreg2.model,int.data,inits=ini,monitor=c("beta","df"))

##
## JAGS model summary statistics from 20000 samples (chains = 2; adapt+burnin = 5000):
##
## Lower95 Median Upper95 Mean SD Mode MCerr MC%ofSD
## beta[1] -10.043 -5.8485 -3.3944 -6.2399 1.6752 -5.5036 0.17435 10.4
## beta[2] 0.80114 1.0989 1.6344 1.1461 0.20838 1.0527 0.021026 10.1
## df 0.45221 24.57 95.833 33.69 30.558 13.041 0.48282 1.6
##
## SSeff AC.10 psrf
## beta[1] 92 0.91216 1.0063
## beta[2] 98 0.90062 1.0075
## df 4006 0.010935 0.99997
##
## Total time taken: 1.6 seconds
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