
z-Tree

Zurich Toolbox for Ready-made Economic Experiments Urs Fischbacher

Ways to run a computerised experiment

researcher → assistant → computer
researcher → z-Tree

• Using z-Tree removes the assistant as a source of misunderstandings.

• z-Tree can be used by computer illiterates.

• Also for computer literates:

– z-Tree provides a comfortable and safe framework to implement ex-
periments.

A Stage Tree

Background

globals

subjects

summary

contracts

session

subjects.do {
EfficiencyFactor = 1.6;

Endowment = 20;

}
Active Screen

Header

Waitingscreen

1

Text

Please wait until the experiment continues

Contribution Entry =|= (30)

Active Screen

Standard

Your endowment: OUT(Endowment)

Your contribution to the project: IN(Contribution)

OK

Waitingscreen

Profit Display =|= (30)

subjects.do {
SumC = sum(same(Group),Contribution);

N=count(same(Group));

Profit=Endowment-Contribution+EfficiencyFactor*SumC/N;

}
Active Screen

Standard

Your contribution to the project: OUT(Contribution)

Sum of all contributions: OUT(SumC)

Your Income in this period: OUT(Profit)

continue

Waitingscreen

To get z-Tree. . .
http://www.kirchkamp.de/Cieyosh3/

User: imprs
Password: eox8dooJ

1 Introduction

Basic concepts

• There is a server program z-Tree and a client program z-Leaf.

• In z-Tree experiments are defined and experimental sessions are con-
ducted.

z-Tree and z-Leaf

2

Server
z-Tree

File
Server

Client1
z-Leaf

Client2
z-Leaf

Client3
z-Leaf

Client4
z-Leaf

Labcontrol

Labcontrol

3

Labcontrol

A first step

• Start z-Tree

– Change language

• Start z-Leaf

• Use alt - tab to switch from program to program.

Starting zLeaf
Linux — with a short script:

#!/bin/bash

num=2

for ((i=0;$i<$num;i++));

/usr/bin/wine zLeaf.exe /size 800x600 /name $i &

done

Microsoft — with links:

C:/.../zLeaf.exe /size 800x600 /name 01

C:/.../zLeaf.exe /size 795x605 /name 02

C:/.../zLeaf.exe /size 790x610 /name 03

C:/.../zLeaf.exe /size 785x615 /name 04

C:/.../zLeaf.exe /size 780x620 /name 05

Stopping zLeaf
Linux — with a short script:

#/bin/bash

killall zLeaf.exe

Microsoft — using the task manager

4

Realtime z-Tree / Testing z-Tree

Server
z-Tree

File
Server

Client1
z-Leaf

Client2
z-Leaf

Client3
z-Leaf

Client4
z-Leaf

2 Individual decision making

Exp1: The simplest game

• The subjects get to know a random number Factor between 1 and 3.

• The subjects enters a number between 0 and 5.

• The payoff is Factor times the number.

• What do the screens contain?

• How do we call the variables that are visible?

• What do we have to calculate?

Factor = 1+rounddown(random()*3,.1)

The Factor is 3.7

Your input is

OK

Profit = 〈x〉 · Factor

Your income = 12.3

continue

Tables and Programming

globals table

Period NumPeriods RepeatTreatment · · ·
1 12 0 · · ·

5

subjects table

Period Subject Group Profit TotalProfit Participate · · ·
1 1 1 0 0 1 · · ·
1 2 1 0 0 1 · · ·
1 3 1 0 0 1 · · ·
1 4 2 0 0 1 · · ·

• The data is stored in tables.

• The tables can be viewed in a window in z-Tree (menu Run/. . .)

• Rows are called records.

• Columns are called variables.

• Variables have names.

• Programs are executed in a record (in a table).

Tables and programming

Background

globals

subjects

summary

contracts

session

Active Screen

Header

Waitingscreen

Text

Please wait until the experiment continues

The globals table

globals table

Period NumPeriods RepeatTreatment · · ·
1 12 0 · · ·

• Always only one single record

• One entry in the table for each variable.

• For each period there is a new ‘globals’ table

• assigning values to variables:

6

globals.do {
variable = expression ;

}

• operators and functions

globals.do {
a = 12-3;

b = 3;

c = exp(b) - a * random();

}

The subjects table

subjects table

Period Subject Group Profit TotalProfit Participate · · ·
1 1 1 0 0 1 · · ·
1 2 1 0 0 1 · · ·
1 3 1 0 0 1 · · ·
1 4 2 0 0 1 · · ·

• One row per subject.

• When a subject enters a stage, all programs at the beginning of this stage
are executed.

• For each subject, programs are executed for the record in the ‘subjects’
database that belongs to the subject.

• For each period, there is a new ‘subjects’ table.

More on tables

records lifetime execution variables

globals 1 period first subject RepeatTreatment

subjects subject period each subject

Group, Profit,

TotalProfit,

Participate,

LeaveStage,

AuctionStop,

AuctionNoStop

summary period treatment last subject

session subject session each subject
FinalProfit,

ShowUpFee,...

contracts dynamic period event
OLD...

7

Programming in the subjects table

Background

globals

subjects

summary

contracts

session

subjects.do {
Factor = 1+rounddown(random()*3,.1);

Endowment = 20;

}
Active Screen

Header

Waitingscreen

Text

Please wait until the experiment continues

Programming in the subjects table

subjects.do {
Factor = 1+rounddown(random()*3,.1);

Endowment = 20;

}

subjects table

Period Subject Group Profit TotalProfit Participate Factor Endowment · · ·
1 1 1 0 0 1 3.2 20 · · ·
1 2 1 0 0 1 2.1 20 · · ·
1 3 1 0 0 1 2.6 20 · · ·
1 4 2 0 0 1 2.3 20 · · ·

Showing variables

Background

globals

subjects

summary

contracts

session

subjects.do {
Factor = 1+rounddown(random()*3,.1);

Endowment = 20;

}

8

Active Screen

Header

Waitingscreen

Text

Please wait until the experiment continues

Contribution Entry =|= (30)

Active Screen

Waitingscreen

Showing variables

Background

globals

subjects

summary

contracts

session

subjects.do {
Factor = 1+rounddown(random()*3,.1);

Endowment = 20;

}
Active Screen

Header

Waitingscreen

Text

Please wait until the experiment continues

Contribution Entry =|= (30)

Active Screen

Standard

Your endowment: OUT(Endowment)

Waitingscreen

Data Input and Output

Contribution Entry =|= (30)

Active Screen

Standard

Your endowment: OUT(Endowment)

Waitingscreen

• “Items” are used to display and to read in data.

• Items have a label that is displayed and used in error messages.

9

• Items are linked to a variable in a tables.

Showing variables

Standard

Your endowment: OUT(Endowment)

Item ✖

Label Your endow-
ment

OK

Cancel

Variable Endowment

Layout 1

Input

• ... in the subjects
table

• Items in default
boxes

• Label

• Variable

• Layout

Showing variables

Background

globals

subjects

summary

contracts

session

subjects.do {
Factor = 1+rounddown(random()*3,.1);

Endowment = 20;

}
Active Screen

Header

Waitingscreen

Text

Please wait until the experiment continues

Contribution Entry =|= (30)

Active Screen

Standard

Your endowment: OUT(Endowment)

Your contribution to the project: IN(Contribution)

OK

Waitingscreen

10

Input of variables

Item ✖

Label Your contri-
bution to the
project

OK

Cancel

Variable Contribution

Layout 1

✔ Input

Minimum 0

Maximum Endowment

Show value (value of variable or default)

Empty allowed
Default

• ...into the
subjects
table

• Input
items

•
Automatic
range
check

Data Processing and Programming

• When subjects make input, the data is transferred to z-Tree.

• In z-Tree calculations are performed.

• The results of the calculations are sent to all the z-Leafs and displayed.

• Calculations can be executed (in programs) at the beginning of a stage
and when buttons are clicked.

Concepts

• Subjects go through periods

• Periods are divided into stages

• Screens are composed of boxes

• Data is stored in z-Tree tables

• Programs allow us to modify the data (payoff functions)

• Data is shown in z-Leaf (in items) (or as plots)

• Data can be read in in z-Leaf (in items) (or as plots)

• Data is automatically saved

11

• Earnings are automatically accumulated

TotalProfit←
∑

t

Profitt

Comments

• To make programs readable, insert comments

• There are two forms

// until the end of the line

/* multi ...

line ...

comment */

a /* comment within the line */ =2;

• comments cannot be nested

How to Run and Test z-Tree

• Start z-Tree on experimenter’s computer

– Change language

• Start z-Leaves on participant’s computers

• ... start z-Leaf with a shortcut

Create shortcut and add /language english in the target field.

• start z-Leaf with a batch file

zleaf.exe /language english

How to build a test environment with several z-Leaves

• Put z-Tree and z-Leaf into one directory.

• Create shortcuts for z-Leaf with command line options or create a batch
file
zleaf.exe /name 1 /language english /size 640x480

zleaf.exe /name 2 /language english /size 640x480 /position 10,10

• #!/bin/bash

num=2

for ((i=0;$i<$num;i++));

/usr/bin/wine zLeaf.exe /size 800x600 /name $i &

done

(you can move windows under Linux, you can not move windows under
Microsoft Windows.)

12

• Start z-Tree

• Start as many z-Leaves as necessary

Exercise: estimate.ztt

• Participant have to guess the value of a mathematical function.

• The closer they are, the higher their profit.

X = random()*pi()/2;

enter guess in an item
Diff = Guess - sin(X);

Profit = 1 - Diff * Diff;

// Profit is the variable that is relevant

for payment

• Topics

– Functions

– Entry and display of variables

3 Game Theory

3.1 Symmetric normal form games

Exp 2: A public goods game

• Groups of 2; matching changes each period

• In each period each subject gets 20 points. These points can be kept or
any amount can be invested in a public good.

• The profit of the subjects consists of two parts. First they get the points
they kept. Second, the points in the public good are multiplied with 1.6
and divided equally between all members of the group.

• One point is worth .07 ¤.

Groups

• The variable Group determines the group matching.

• There are menu commands for different types of matchings.

– Partner

– Stranger

– absolute Stranger

– typed absolute Stranger

• You can modify the variable Group also in a program (recommended).

13

Tables and Programming

globals table

Period NumPeriods RepeatTreatment · · ·
1 12 0 · · ·

subjects table

Period Subject Group Profit TotalProfit Participate · · ·
1 1 1 0 0 1 · · ·
1 2 1 0 0 1 · · ·
1 3 1 0 0 1 · · ·
1 4 2 0 0 1 · · ·

• The data is stored in tables.

• The tables can be viewed in a window in z-Tree (menu Run)

• Rows are called records.

• Columns are called variables.

• Variables have names.

• Programs are executed in a record (in a table).

The Stage Tree
The description of a treatment is arranged in a tree structure, the stage tree:

• The stage tree shows the sequence of stages

• Stages contain programs and the two screens ,

• Screens contain boxes

• Boxes contain items and buttons

In each stage the following happens:

• Can a subject enter stage?

• Programs are executed.

• Active screen is displayed.

• Waiting screen is displayed (if the next stage cannot be entered)

14

A Stage Tree

Background

globals

subjects

summary

contracts

session

subjects.do {
EfficiencyFactor = 1.6;

Endowment = 20;

}
Active Screen

Header

Waitingscreen

Text

Please wait until the experiment continues

Contribution Entry =|= (30)

Active Screen

Standard

Your endowment: OUT(Endowment)

Your contribution to the project: IN(Contribution)

OK

Waitingscreen

Profit Display =|= (30)

subjects.do {
SumC = sum(same(Group),Contribution);

N=count(same(Group));

Profit=Endowment-Contribution+EfficiencyFactor*SumC/N;

}
Active Screen

Standard

Your contribution to the project: OUT(Contribution)

Sum of all contributions: OUT(SumC)

Your Income in this period: OUT(Profit)

continue

Waitingscreen

Table functions

• Sometimes we want to access data from other records

• Example

C is the contribution to the public good

15

sumC = sum(C);

sumC is the sum of all entries in the column C of the subjects table.

• Syntax

table_function(expression);

table_function(condition, expression);

• sumCi =
∑

j(Cj)

Other table functions are average(), product(), count(), find(), maximum(),

median(), minimum(), product(), regressionslope(), stddev()

Scope operator
sometimes we want to mix data from the current record and from other

records:
sumGHi =

∑

j(Gj ·Hi)
sumGH = sum(G * :H);

Scope operator :
Examples
C is the contribution of a player.
SumC is the sum of all contributions in a group of players:

SumC = sum(Group == :Group, C);

SumC = sum(same(Group), C);

Rank = count(C >= :C);

Scope operator

c = sum(a * b);

d = sum(:a *b);

e = sum(:a * :b);

a b c=sum(a*b); d=sum(:a*b); e=sum(:a*:b);

2 5 10+48+56=114 10+24+14= 48 10+10+10=30
4 12 10+48+56=114 20+48+28= 96 48+48+48=144
8 7 10+48+56=114 40+96+56=192 56+56+56=168

same

subjects table

Period Subject Group Profit TotalProfit Participate · · ·
1 1 1 0 0 1 · · ·
1 2 1 0 0 1 · · ·
1 3 1 0 0 1 · · ·
1 4 2 0 0 1 · · ·

16

same(x) ⇔ x == :x

Examples

subjects.do {
SumC = sum(same(Group), C);

AvOthC = average((same(Group)) &

not(same(Subject)), C);

}

Exercise rankesti

• The participants have to make a guess for a mathematical function.

• The profit depends on how good they are compared to the other partici-
pants.

• The treatment should work with groups.

• available table functions average(); count(); find(); maximum(); median();

minimum(); product(); regressionslope(); sum();

Solution rankesti

subjects.do {
Diff = ...;

}

Now we have to start a new program. All differences must be calculated
before we can determine the rank.

subjects.do {
Rank = count(Group == :Group &

Diff <= :Diff);

}

Other tables

• globals

– one record for all subjects

• summary

– one record per period

– “survives” the end of the period

• contracts

– used for market experiments

• session

– similar to subjects table but “survives” the end of the treatment

17

Execute calculation in specific tables

subjects.do {
a=1;

}

• table.do

subjects.do {
a=1;

table.do {
b=:a;

}
}

• table.tablefunction

subjects.do {
myM = table.find(same(Group) &

not(same(Subject)), M);

}

Scope and auto-scope

table A

x a . . .

table B

. . . b . . .

table C

. . . c . . .

A.do {
x = a + B.sum(:a + b + C.product(::a + :b + c))

}

xi = ai +
∑

j

(

ai + bj +
∏

k

(ai + bj + ck)

)

auto scope:

A.do {
x = a + B.sum(a + b + C.product(a + b + c))

}

auto scope is confusing if the same name appears in different tables.

18

globals-DB
the globals table can be accessed with the scope operator as if the program

was located in the globals table.

globals.do {
subjects.do {
myM = :M; }

}

in the subjects table the following are equivalent

subjects.do {
myM = :M;

}

subjects.do {
myM = \ M;
}

maximum scope = globals table

Exercise game222

• Make a treatment for a symmetric two person normal form game (e.g.,
a prisoner’s dilemma) where both players have two strategies at their
disposal.

• Subjects enter 1 or 2 to choose between the strategies.

• fine-tuning: try the input format:

!radio: 1=”A”; 2=”B”;

3.2 Asymmetry

Parameter table

• Parameters can be different for each period and for each subject:

subjects.do {
if (Subject == 1 & Period == 1) {

...

}
}

• Or sometimes easier (?) . . . parameter table (in Menu)

• period parameters

• subject specific parameters

19

Exercise game222

• Generalize game222 to asymmetric games a treatment for a general two
person normal form game where both player have two strategies at their
disposal.

• Subjects enter 1 or 2.

• fine-tuning: use the input format:

!radio: 1="A"; 2="B";

• The game parameters should change from period to period.

Exercise group

• Make treatments for pgsimple and game222 that can be conducted with
more than one group.

• Try different group matchings:

– Partner

– Stranger

– Matching groups

– “absolute stranger”

3.3 Extensive form games

Examples
Public goods game:
all players:
1. contribution
2. profit display

Ultimatum game:
proposer responder
1. proposal [skips one stage]
[skips one stage] 2. acceptance
3. profit display profit display

Leaving out stages

• Conditions

• Set the variable Participate to Zero;

subjects.do {
Participate = if (Type == PROPOSER, 1, 0);

}

• alternatively:

subjects.do {
if (not (Type == PROPOSER)) {

Participate =0;

}

20

Stage: start options

• Wait for all =|=

– general case

• As soon as possible -=

– simultaneous stages

– sequence of stages that do not depend on other participants

• Start if. . . condition (. . .)|=

– If condition is satisfied

– Complex course of actions

Exercise: Ultimatum game

• Proposers choose offer 0 < x < 100.

• Responders can accept or reject (Yes/No).

• If “Yes”, payoffs are x for responder, 100-x for proposer

• If “No”, payoffs are 0 for both

Item layout
layout input output

!radio: 1=”Mon-
day”; 7=”Sunday”;

Monday
Sunday

Monday
Sunday

!text: 1=”green”;
2=”red”;
3=”black”;

red red

Exercise: Ultimatum game

globals.do {
PROPOSER=0;

RESPONDER=1; PIE=100;

}

subjects.do {
r = random();

}

subjects.do {
Type=if(r==maximum(same(Group),r),PROPOSER,RESPONDER);

}

21

Proposal =|=

subjects.do {
Participate=if(Type==PROPOSER,1,0);

}

Standard
You are a Proposer,. . .
Piesize: OUT(Pie);
Offer: IN(Offer);
continue

Response =|=

subjects.do {
Participate=if(Type==RESPONDER,1,0);

}

subjects.do {
Offer = find(same(Group) & Type == PROPOSER,Offer);

}

Standard
You are a Responder,. . .
Piesize: OUT(Pie);
Offer: OUT(Offer);
Accept: IN(Accept);
continue

Exercise: Ultimatum game
Feedback Proposer =|=

subjects.do {
Participate=if(Type==PROPOSER,1,0);

}

subjects.do {
Accept = find(same(Group) & Type == RESPONDER,Accept);

Share=if (Type=PROPOSER,Pie-Offer,Offer);

Profit=Share * Accept;

}

Standard
You are a Proposer,. . .
Piesize: OUT(Pie);
Offer: OUT(Offer);

22

Decision: OUT(Accept);
Profit: OUT(Profit);
continue

Feedback Responder -|=

subjects.do {
Participate=if(Type==RESPONDER,1,0);

}

Standard
You are a Responder,. . .
Piesize: OUT(Pie);
Offer: OUT(Offer);
Decision: OUT(Accept);
Profit: OUT(Profit);
continue

4 Layout

Screen layout

• Screen layout is static

• Screen is composed of boxes

• Boxes are placed sequentially

Box
Box = rectangular area of the screen containing stuff

• standard box

• header box

• help box

• grid box

• history box

23

Positioning of Boxes

• Boxes are positioned one after the other.

• There is a remaining box that can be cut.

distance to
margin

height

width

remaining
box

Here the adjustment is at the left of the remaining box.

• Work from outside to inside.

• Use container boxes for parts of the screen that consist of several boxes,
but logically belong together.

• Use container boxes when you need the same part of the screen in another
stage.

Items
Item = informational unit

• number input

• text input (predefined text options)

• radio buttons

• check boxes

• sliders

• scrollbars

• buttons

Item layout options

24

layout input output

!radio: 1=”Mon-
day”; 7=”Sunday”;

Monday
Sunday

Monday
Sunday

!radioline:
0=”Mon.”;
6=”Sun.”;5;

Mon. Sun. Mon. Sun.

!slider: 10=”good”;
20=”bad”;101;

good bad good bad

!scrollbar:
10=”good”;
20=”bad”;101;

good bad good bad

!text: 1=”green”;
2=”red”;
3=”black”;

red red

!button:
1=”green”;
2=”red”;

green

red
red

Active item

• When you put a program into a button, radio button,... the program is
executed when the item is changed.

Exercise Layout

• Make radio buttons into your ultimatum game

5 Markets and Auctions

Sealed Bid Auctions

• simple

Clock Auctions

• later command:

globals.do {
later (3) repeat { Price = Price -1;}
}

• Leave the stage when one in the group accepted an offer in an auction. In
a button

25

subjects.do {
...

subjects.do {
if (same (Group)) {LeaveStage = 1;}
}

}

• Exercise “Dutch auction”

– Price starts at 100 and then decreases.

– Each group has an inventory of 1 item which can be sold to a member
of the group.

– Once a member of a group has bought, all members move to the next
stage.

Posted offer auctions

• Subjects can make an indefinite number of offers.

• Subjects see the other offers and can accept them.

• The stage is terminated after a fixed timeout.

Problems in market experiments:

• Not only “one” entry per stage.

• Participants get information on the entries of the other participants during
a stage.

• Stage termination after timeout.

How to proceed?

• What do subjects see?

– What is the contract data?

– How do we represent it in tables?

– Where do we put the information?

• What can subjects do?

– How does data change when a subjects does an action (presses a
button)?

z-Tree
data

program

z-Leaf
display
action

26

“New” for market experiments

• contracts table.

– table with flexible number of records:

– records can be added

. . . in contract creation boxes

. . . with the new command:

contracts.new {
x=1;

}

• New types of Boxes:

– contract creation box

– contract list box

– contract grid box

• Program execution triggered by button clicks.

• Automatic update of new and modified data.

contracts table in an auction
The contracts table contains all information about offers.

Price: The price offered

Seller: The ID (variable Subject) of the Seller or −1 if there is no seller, i.e.,
if the offer can be accepted by a seller.

Buyer: Analogous to seller ID.

Transactions:

• Bids: Seller==-1

• Asks: Buyer==-1

• Trades: Seller==..., Buyer==...

contracts table in an auction
Seller Buyer Price Comment
2 −1 87 Seller 2 made an offer of 87
−1 6 17 Buyer 1 made an offer of 17
3 7 40 Buyer 7 bought from seller 3 at 40
1 −1 77 Seller 1 made an offer of 77
4 − 2 74 — deleted —
−1 9 33 Buyer 9 made an offer of 33
1 − 2 72 — deleted —
4 8 67 Seller 4 sold to buyer 8 at 67

27

• contract creation box — make contracts

• contract list box — view and select contracts

• contract grid box — view and modify a given number of contracts.

Stage termination

• Stage is left after a timeout. . .

• . . . or with the global variables:

– AuctionStop (stop, even if more time is left)

– AuctionNoStop (don’t stop, even if time has run out)

• Single subjects leave a stage with

– LeaveStage

Program in buttons
Example: Set the subject who created or selected the offer with:

buy / ...

subjects.do {
CreatorOrSelector = : Subject;

}

• . . . executed when the button was successfully pressed.

• In these programs the record of subject who pressed the button can be
accessed with the scope operator.

Contracts

Contract maker: contracts

Price: IN(Price)

Make offer

contracts.do {
Seller = :Subject ;

Buyer = -1 ;

}
Contract list: contracts (Buyer==-1), sorted by: Price

Price: OUT(Price)

Buy

contracts.do {
Buyer = :Subject ;

subjects.do { ;

if(Subject==:Buyer) {
Money = Money - Price;

28

Assets = Assets + 1;

}
if(Subject==:Seller) {
Money = Money + Price;

Assets = Assets - 1;

} }

Example: single sided auction

• contracts table:

– Variables Seller and Buyer

– Subjects ID : This subject made/selected the offer

– −1: Open offer

– −2: deleted offer

• Buyers make offers

contract creation box:

Seller = -1; Buyer = :Subject; // scope operator

• Sellers can accept offers

contract list box

Seller = : Subject;

Exercise: single sided auction

• Show the own accepted contracts (auction2)

• delete the offers of the Buyer whose offer was accepted (auction3)

contracts.do{

if (Buyer == :Buyer & Seller == -1) {

Seller = -2;

}

}

Check entries with checkers

• checkers can be placed into buttons.

• Exercise

– Add an improvement rule to the action: Only better offers are ac-
cepted.

– Note: use contracts.maximum(...) not maximum(...). The latter
is executed in the new contracts only.

29

Examples

• Double auction (da)

– Wage offer by firm or worker.

– Acceptance by firm or worker.

– Only one trade allowed.

Posted Offer Markets

• One proposer makes an offer. (e.g., in a contract creation box)

Proposer = : Subject;

Responder = -1;

• Responders can — one after each other — decide whether to accept or
reject the offer.

• Option “At most one per group in stage”

(If the acceptance decision consist of more than one stage: option “. . . and
in previous stage(s)”)

Posted Offer Markets

• Enter the stage if there are open offers

if(Type == PROPOSERTYPE) {

Participate =0;

}

elsif(contracts.count(same(Group) & Responder > 0) >

numOffers) {

Participate =0;

}

else {

Participate =1;

}

Priority

• In stages with the “At most one per group in stage” option, the sequence
of subjects can be determined with the variable Priority:

• The lower the value of Priority, the earlier a subject can enter the stage.
(Think of the Priority variable as a rank.)

30

6 Running a session

z-Tree and z-Leaf

Server
z-Tree

File
Server

Client1
z-Leaf

Client2
z-Leaf

Client3
z-Leaf

Client4
z-Leaf

Planning a simple session

• welcome treatment (welcome.ztt)

– setting the showup fee

– calculator

• public goods experiment (pg.ztt)

– the main treatment

• Ultimatumgame (ug.ztt)

– a second treatment

• Questionnaires and payment (end.ztq)

– payment file is written

6.1 Questionnaires

Questionnaires

• Payoff file can be written.

• Questions with no consequence on payoff.

• Different formats for the questions.

• Layout not screen oriented — indefinite end with scrollbar.

• Text entry possible.

• Some variables (FinalProfit,. . .) can be accessed.

• Importing questionnaires.

31

Typical Questionnaire

• address form (payment file)

• questionnaires

• profit display

• bye bye screen

Course of a session

• Preparation of treatments and questionnaires

• Start of experimenter PC. Start of z-Tree.

• Start of subject PCs. (automatic start of z-Leaf)

• Subjects show up

• Start of session with first treatment

• Observe subjects entries

• Start of further treatment(s)

• conclude session with questionnaire

• Payment

• Turn off computers

• Data analysis

6.2 Emergency handling

Crash of Subject PCs

• Subject PC can simply be restarted.

• If another computer is started as a replacement:

– Discard client

– Start replacement

– Move the z-Leaf name in the clients’ window onto the crashed com-
puter’s name.

Clients’ Table
4 clients state time

client 1
client 2
client 3
reserve

32

Crash of z-Tree

• Possibly reboot computer

• Start z-Tree

• Menu “Restart all Clients”

• Menu “Restore Client Order”

• Menu “Reload Database”

• Open last treatment

• Restart with negative number of practice periods

Losses and Bankruptcy

• Losses can be covered by

– 1. Profit made in earlier periods

– 2. Showupfee

– 3. Credit or money added by the subjects

• How this is handled can be defined in the treatment.

Simple installation of z-Tree

• Make a directory “ztree”.

• Make a user “exp” that has read access to this directory.

• Make a batch file that starts zleaf.exe in the desired language.

• Put a shortcut of this batch file into the startup directory of the user exp.

Advanced installation of z-Tree

• Directory structure

– ztree

∗ datadir

∗ priv

∗ temp

∗ testtrash

– zleaf

• Make a batch file that starts zleaf.exe in the desired language and put a
shortcut of this batch file into the startup directory of the user exp.

• Make suitable shortcuts to start ztree.exe

33

7 Advanced features

7.1 Graphics

Graphics in Version 3

• Plot box

defines a coordinate system for lineplots, scatterplots, bar and pie charts

• Plot point/line/rectangle/segment

Graphics element with data in subjects table

• Plot text

• Plot graph

Graphical display of (parts of) a table

• Plot input

Click position translated into table entry

Select, drag

• Multimedia box

Display picture, sound or movie

Plot Box and Graphical Elements

• The plot box sets up a coordinate system.

Linear, categorical, and logarithmic.

• Into such a coordinate system, graphical elements can be placed:

Lines, arrows, circles, arcs.

• Positions defined in world coordinates (defined when the box is created)

• Line thickness. . . defined in screen pixels

• Graphical element have color defined in rgb(red,green,blue), r,g,b in [0,1].

34

Application: Smile

• Set coordinate system.

• Check “Maintain aspect ratio”.

• Add graphical elements.

• Use buttons to define color.

• Add a standard box with a button
to conclude the stage.

Plot Graph

• Allows to draw graphs, charts,...

• Sets up a sequence of records

– In each record, graphical elements can be drawn.

– Points can be connected.

– Plot graphs can also be nested.

– Important: Only visible if it contains graphical elements!

Application: Grid lines

linepositions

globals.do {
iterator(i,-100,100,10).do {
linepositions.new{ pos = :i; }

}

[-100,100]×[-100,100]
...

b
b
b
b graph:linepositions(TRUE)

-100,pos->100,pos
b
b
b
b graph:linepositions(TRUE)

pos,-100->pos,100

35

Application: Box chart

• Categorical coordinate system:

1..8 -> 0.5 .. 8.5

• Plot graph with plot rect

• Axis with ticks and data labels.

Application: Pie chart

// Preparation

Sum = contracts.sum(Value);

Angle = 90;

contracts.do{

Share = Value / :Sum;

:Angle = :Angle - 360*Share;

StartAngle = :Angle;

Red = random();

Green = random();

}

Application: Pie chart

Plot Pie ✖

Name PIE OK

center x 0 Cancel

y 0

radius x 100

y 100

start angle[*] StartAngle

angle[*] Share*360

line color rgb(0,0,0)

line width 2

fill color rgb(Red,Green,.4)

Graphical input

z-Tree
data

program

z-Leaf
display
✴ click

36

Example: Move a circle

• Initialize position (x,y) to (0,0)

• Define point at (x,y)

• Create plot input

– Event: click; action: new

– Directly input x and y into the subjects table.

You loose information about clicking!

– Perhaps better: Input into contracts table

Add a program to modify data in subjects table.

Graphical input: select

• Graphical objects can be selected as in contract selection box.

• Position of plot item determines which level is selected.

• Selects a line

b
b
b
b graph:lines(Owner==:Subject)

x1,y1->x2,y2

✴ select

• Selects the whole graph

b
b
b
b graph:lines(Owner==:Subject)

x1,y1->x2,y2

✴ select

• Selection can trigger a program for all the selected items, i.e., program is
executed in scope of the selected object

Application: Highlight a rectangle when the mouse is moved into it.

• Event: MouseEnters/MouseLeaves

• Action: Select

37

Graphical input: drag

• The dragging checks whether an object has been clicked.

• While the mouse is clicked, the objects is dragged.

• While the object is moves, z-Leaf updates the object’s position.

– p0: where the objects has been clicked the first time

– p: where the mouse is currently moved

– p’: where the object should be moved to

• When the object is released, z-Tree updates the object’s position.

The multimedia box

• Box for displaying jpg pictures and movies.

• Must be located in the directory where z-Leaf runs.

• Cannot be places in plot boxes. (Is a to do for the developers).

Animation

• In combination with the later command, you can create animations.

• But be warned!

– z-Tree is usually not efficient enough to create complex animations
on the screen of each subject.

7.2 Chatting

Chat box

Chat box

• Input area like a contract creation box

• Output area like contract list box

• Display condition: will be box be displayed.

Type == Reader

• Table: which table will be used (e.g. contracts).

• Input var: where messages are stored (e.g. Words)

(if empty: observer, can only read, not write)

38

• Condition: which rows will be displayed.

Group == :Group

• Output text:

<>Player <ID|1>: <Words|-1>

• A program in the box allows to store additional variables:

Subject = :Subject; Group = :Group;

7.3 Strings

Input items - strings
In a standard item:

• Layout: !string

• Input: ✔

• Minimum: (number of characters)

• Maximum: (number of characters)

Different from a chat:

• Return key does not send the message.

Strings

char(65) ”A”
code(”A”) 65
mid(”haystack”,4,3) ”sta”
pos(”haystack”,”sta”,1) 4
len(”haystack”) 8
upper(”haystack”) ”HAYSTACK”
lower(”IMPRS”) ”imprs”
trim(” hay stack ”) ”hay stack”
format(3.1415926,0.01) ”3.14”
stringtonumber(”3.14”) 3.14

7.4 Data analysis

7.5 Experiment engineering

Experiment engineering

• Tips how to develop an experiment.

• Further programming concepts.

39

Tips how to develop an experiment

• What data will be presented in what order?

• How can this data be organized?

– Think of different tables.

– Use telling variable names.

– Use comments.

• How is the experiment divided into treatments? (usually easy)

• What are the stages; the boxes?

– You can simulate stages by sequentially showing different boxes.

• Design the screen layouts and describe the actions (programs).

Debugging

• Within programs

– Read the error message.

– z-Tree tries to position the cursor into the line where the error is
located. . . look around.

– Use comments to localize the error.

• Testing and debugging a treatment

– Test each possible combination of parameters.

– Consult the tables to check intermediate results.

– Stop the clock.

– Leave Stage (per client)

– End after period

• Build an auto-pilot into your treatment. This facilitates testing the lab-
performance with a larger number of clients.

Arrays

• Example: strategy method

– Subject A selects a between 0 and 10

– Subject B can condition b on a

• Solution 1:

– a, b0, b1, b2, b3,...

40

– actualB = if(a==0,b0, if(a==1, b1, if (a==2,....)))

• Easier

– array b[0, 10];

– // enter a, b[0], b[1], b[2], b[3], ...

– actualB = b[a];

Loops

• s = iterator(i, 5).sum(i*i);

iterator(i, 0, 10).do{

:b[i] = 10 + 2* i;// iterator opens new scope !!!

}

• while(condition) statements ;

• repeat statements while (condition);

User defined tables

• Different markets

• Flexible history

• table definition

– lifetime

∗ period

∗ treatment

∗ session

Getting data from previous periods

• Use user defined tables.

• Use OLDsubjects, ... table.

Formatting with RTF

RTF

Text formatting in z-Tree
Example: If we want to write in bold or italic, we have to use RTF.

{{\rtf \fs18 {\ul\fs28\b\qc RTF\par }\b

Text formatting in z-Tree\b0 \par

Example: If we want to write in \b bold\b0 or

{\i italic}, we have to use RTF.}}

41

Variables integrated into text
Your income: 20 - 12 + 0.4 * 45 = 8 + 18.0 = 26.0
It is big.

<>Your income : <M|1> - <contribution|1> +

<factor|0.1> * <sumC|1> = <Profit1|1> +

<Profit2|0.1> = <Profit|0.1>

It is <Profit |!text: 0=‘‘small’’; 40=‘‘big’’;>.

Combining variables and RTF

• Variable are evaluated first.

• Conditional formatting is possible:

• Show the negative numbers in italic

• <>{\rtf The number is <x|!text: 1="";-1="\i ">

<x|1><x|!text: 1="";-1="\i0 ">}

Turning Boxes On and Off

• In all boxes there is an option

display condition

• The variables used in this condition can change in the course of the ex-
periment

The box is hidden and shown

• By putting only a button an item into a standard box, you can also show
and hide buttons or items

Menu: Leave Stage/End after period

• For debugging, a treatment can be ended prematurely.

– At the end of a period.

– Stages can be ended without subject intervention.

– If input was necessary, a warning appears.

– [ctrl]-[alt]-[F5] ends a repeat loop.

• However, no way to stop treatment.

Future Development

• Procedures and functions

42

Course of a session

• Preparation of treatments and questionnaires

• Start of experimenter PC. Start of z-Tree.

• Start of subject PCs. (automatic start of z-Leaf)

• Subjects show up

• Start of session with first treatment

• Observe subjects entries

• Start of further treatment(s)

• conclude session with questionnaire

• Payment

• Turn off computers

• Data analysis

Your treatment ready-made
Your treatment ready made:

• What decision have subjects to take ?

variables

• When are decision taken?

stages

• How do the screens look like ?

Layout

• How choices interact and lead to payoffs ?

Programs

• Does it work ? Debug

Operators

• Mathematical operators

– + addition

– - subtraction

– * multiplication

– / division

43

• Relational operators:

– < smaller

– <= smaller or equal

– == equals

– ! = unequal

– >= greater or equal

– > greater

• Logical operators:

– & logical and

– — logical or

– Scope operators:

– : next higher scope

– \ highest possible scope. This is always the record of the globals
table.

Statements
x = y;

if (a) ss1

if (a) ss1 else ss2

if (a) ss0 elsif (b1) ss1 elsif (b2) ss2...

if (a) ss0 elsif (b1) ss1 elsif (b2) ss2.... else sse

t.do ss

t.new ss

array v[x];

array v[x, y];

array v[x, y, z];

while(a) ss

repeat ss while (a); later (a) do ss

later (a) repeat ss

Functions

44

abs(x)
and(a,b)
atan(x)
cos(x)
exp(x)
gettime()
if(a,x,y)
ln(x)
log(x)
max(x,y)
min(x,y)
mod(x,y)

not(a)
or(a,b)
pi()
power(x,y)
random()
randomgauss()
randompoisson(x)
round(x,y)
rounddown(x,y)
roundup(x,y)
same(x)
sin(x)
sqrt(x)

average(x)
count()
find(x), find(a,x)
maximum(x), maximum(a,x)
median(x), median(a,x)
minimum(x), minimum(a,x)
product(x), product(a,x)
regressionslope(x,y)
regressionslope(a,x,y)
stddev(x), stddev(a,x)
sum(x), sum(a,x)

45

