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Abstract

Deviations from risk-neutral equilibrium bids in auctions can be related to incon-

sistent expectations with correct best replies or correct expectations but deviant

best replies (e.g. due to risk aversion, regret, quantal-response mistakes). To dis-

tinguish between these two explanations we use a novel experimental procedure

and study expectations together with best replies in symmetric and asymmetric

auctions. We extensively test the internal validity of this setup. We find that

deviations from equilibrium bids do not seem to be due to wrong expectations

but due to deviations from a risk-neutral best reply.
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1 Introduction

Since early auction experiments by Coppinger et al. (1980) and Cox et al. (1982) it is

well-known and repeatedly confirmed that bidders in auctions consistently deviate from

risk neutral symmetric Bayesian Nash equilibrium (RNBNE). We broadly distinguish

three different approaches to explain deviating bidding behaviour: (1) Some authors

drop the equilibrium concept entirely and replace it with a dynamic concept like learning

(see Ockenfels and Selten, 2005; Neugebauer and Selten, 2006). (2) A large part of

the literature keeps the notion of an equilibrium but modifies the best-reply behaviour

of players. This can be done either explicitly, e.g. through introducing risk aversion or

inequity aversion or regret, or implicitly through allowing for random mistakes in the

best-reply. (3) A smaller part of the literature studies equilibria where players do not

always form correct expectations. In this paper we want to distinguish between the

second and the third approach.

Let us briefly review the literature on the second approach: modifications of the

best-reply behaviour. This literature assumes that players follow a Bayesian Nash

equilibrium but replaces, e.g., risk neutrality with risk aversion. Indeed, risk aversion

explains overbidding deviations from RNBNE to some degree in first-price auctions

(see, e.g., Andreoni et al., 2007; Chen and Plott, 1998; Cox et al., 1988; Kirchkamp

et al., 2006). However, risk aversion does not explain all deviations addressed by the

literature on auctions. E.g., overbidding in second-price auctions (see Kagel et al.,

1987; Harstad, 2000; Cooper and Fang, 2008) or overbidding in third price auctions

(see Kagel and Levin, 1993) cannot be explained by risk aversion. Furthermore, in-

dividual attitudes toward risk are not consistent over different institutions (see Isaac

and James, 2000). Accordingly, recent literature suggests alternative modifications of

the utility function, introducing motives like regret (see Filiz-Ozbay and Ozbay, 2007;

Engelbrecht-Wiggans and Katok, 2007a), or spite (Morgan et al., 2003). Furthermore,

Goeree et al. (2002) introduce quantal-response-equilibria and explain overbidding in

first-price private-value auctions as the result of small mistakes in forming best replies.

So far we have confined our attention to the specific way bidders choose their best

replies. However, unexpected or unexplained bids can also be due to inconsistent expec-

tations of the bidders (see Stahl and Wilson, 1995). Indeed Chen and Plott (1998, p. 73)

suggest for first-price auctions that “the theory of beliefs and belief formation might be

the most productive place to work.” Following this advice, Eyster and Rabin (2005) and

Crawford and Iriberri (2007) show that simplified (and inconsistent) expectations can

explain overbidding in first-price common-value auctions. For first-price private-value

auctions, Goeree et al. (2002, p. 263) demonstrate that misperceived probabilities of
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winning the auction would explain overbidding as well as risk aversion.

Obviously, we can fit experimental data either with suitable mistakes in expectations

or with manipulated best replies. Experiments that we mentioned so far observe only

bids and can, thus, not distinguish these two approaches. In this paper we introduce and

test a new method which allows us to measure expectations about bidding strategies of

other bidders and bids together. This method allows us to gain more insight into the

bidding process and to better understand to which degree expectations and best replies

contribute to deviations from risk neutral Bayesian Nash equilibria.

While expectations have been elicited in several experimental studies before, this is

the first study to elicit expectations about the strategies of other players in the context

of auctions. The literature on incentivised belief elicitation addresses various settings

including public goods (e.g. Croson, 2000; Gächter and Renner, 2010; Offerman et al.,

1996, 2001; Wilcox and Feltovich, 2000), normal-form games (e.g. Costa-Gomes and

Weizsäcker, 2008; Ehrblatt et al., forthcoming; Fehr et al., 2008; Haruvy, 2002;

Ivanov, forthcoming; Mason and Phillips, 2001; Nyarko and Schotter, 2002; Rey-Biel,

2009), various market settings (e.g. Haruvy et al., 2007; Hommes et al., 2005; Marimon

and Sunder, 1993; Sonnemans et al., 2004), information pooling (e.g. McKelvey and

Page, 1990), trust games (e.g. Dufwenberg and Gneezy, 2000), information cascades

(e.g. Dominitz and Hung, 2004) and individual choice tasks (e.g. Kelley and Friedman,

2002; Schmalensee, 1976).

In the context of first-price private-value auctions, Armantier and Treich (2009)

elicit expectations about the probabilities of winning the auction with some bid. This

is complementary to our approach of eliciting expectations about bidding strategies.

Interestingly, they find that, except for very small and very large bids, reported expec-

tations about probabilities of winning the auction are lower than actual probabilities

implied by actual bidding behaviour in their experiment.

Expectations1 and bids can be measured either simultaneously or in isolation. In

this paper we pursue both approaches. In the simultaneous treatment participants

play together in pairs. Each player in a pair forms expectations about her opponent’s

strategy. We elicit these expectations. Based on these expectations, players submit bids.

We can then compare bids with expectations and find out to what degree deviations

from Bayesian Nash equilibrium bids are a result of erroneous bids or a failure to behave

optimally given these bids.

In an alternative treatment we observe single players who play against a comput-

1Here and in the remainder of this paper we use the short-hand ‘expectations’ to refer to ‘expecta-
tions about the bidding strategies of other bidders’.
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erised opponent with an announced bidding function. These bidding functions are

those of human bidders from previous experiments. With an announced strategy of

the opponent it is not difficult for bidders to form expectations. We can observe bids

isolated from expectation formation. A similar approach is used by Walker et al. (1987)

who study an experiment where participants bid against a computerised opponent. In

their experiment participants are not informed about the computerised bidding func-

tion, thus, a comparison of bids with best replies is not possible. Neugebauer and Selten

(2006) and Dorsey and Razzolini (2003) study experiments with first-price private-value

auctions where bidders play against computerised opponents with a known distribution

of bids. Charness and Levin (2009) also use computerised opponents in a common value

setting. Such a setup allows to compare participants’ strategies with best replies.

Some experimental studies, (e.g. Costa-Gomes and Weizsäcker, 2008; Offerman

et al., 1996), suggest that strategies are typically not best responses to held expectations

while expectations seem to resemble actual strategies fairly well. In comparison to these

experiments, we analyse a completely different type of game (an auction with incomplete

information and infinitely many actions).

We briefly summarise the equilibrium model in section 2. The experimental treat-

ments are discussed in section 3 and internal validity of our method is checked in section

4. We present results in section 5 and conclude in section 6.

2 Model

Our workhorse is a private value first-price sealed-bid auction with two bidders i and j.

This auction type is simple and still allows us to describe expectations and best replies

in a non-trivial way. It might be interesting to enrich this environment by introducing

common values in a later study. Here, however, we prefer the simplicity of the private

value setting.

2.1 Symmetric Auction

In our experiment we look at two situations: One where valuations are symmetrically

distributed for both bidders, and one where values follow different distributions for

both bidders. Let us start with the symmetric case. Bidders’ valuations xi and xj are

independently distributed according to a distribution function F () which is the same

for each bidder. The derivation of risk neutral symmetric Bayesian Nash equilibria is

standard and reported to introduce notation. We rely on risk neutral equilibria as a

benchmark and we use an experimental setup that eliminates a substantial part of the
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risk that bidders face in auctions. Bidder i with valuation xi expects the opponent to

follow a monotonically increasing bidding function bexp(xj) with inverse bexp(−1)(·). If

bidder i bids b(xi) then this bidder gains xi − b(xi) with probability F (bexp(−1)(b(xi)))

and the expected profit is u = (xi − b(xi)) · F (bexp(−1)(b(xi))). Bidders choose their

individual bidding function bi to maximise u given their expected opponents’ bidding

function bexp. It is straightforward to show (Vickrey, 1961) that if F () is a uniform

distribution over some interval [0, x̄] both bidders have a symmetric bidding function

b∗(x) =
1

2
x (1)

in the symmetric equilibrium. We should note that, while there are auction situations

where further asymmetric equilibria exist, the unique equilibrium in the introduced

auction model is symmetric (Maskin and Riley, 2003).

2.2 Asymmetric auction

While a symmetric auction is perhaps simpler to understand for participants, the sym-

metric setting makes it also harder for us to observe the direction of the causality. Do

bidders really first form expectations and then optimise against these expectations?

One might fear that the idea of describing expectations is so abstract that bidders use

a simple heuristic: First they determine a strategy and then, when asked to state ex-

pectations, they infer expectations about the behaviour of the other bidder from their

own bids? One way to address this issue is to introduce auctions where values are

distributed differently for both bidders and where, hence, also bids should differ.

We obtain the asymmetric auction case by contracting bidder i’s support while

stretching the one of bidder j such that lower bounds remain fixed. Again, bidders’

valuations xi and xj are independently distributed. Specifically, the cumulative distri-

bution functions are given by Fi : [x, xi] → [0, 1] and Fj : [x, xj ] → [0, 1] such that

xj > xi. For a theoretical analysis of asymmetric auctions with private values see Plum

(1992) and Maskin and Riley (2000).

In accordance with our experimental setup we assume uniformly distributed valu-

ations and refer to bidder i as the weak bidder and to bidder j as the strong bidder

since Fi is first-order stochastically dominated by Fj. For our case of two risk neutral

bidders with uniformly distributed valuations, Plum (1992) shows that there exists a

unique Bayesian Nash equilibrium and provides explicit equilibrium bidding functions.

Denoting the equilibrium bidding function of the weak bidder by b∗w(x) and that of the

strong bidder by b∗s(x), with c = (xi − x)−2 − (xj − x)−2, we obtain for our asymmetric
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Figure 1: Equilibrium bids for bidders with asymmetric valuations
The solid line shows equilibrium bids for the case where bidders can choose any differentiable bidding

function. The dashed lines show equilibrium bids for bidders who can only choose a stepwise linear
bidding function as in our experiment. Valuations are normalized to the intervals of [0, 40] and [0, 60]
respectively.

auction:

b∗w(x) = x +
1 −

√
1 − c (x − x)2

c (x − x)
(x ∈ [x, xi]) (2)

b∗s(x) = x +

√
1 + c (x − x)2 − 1

c (x − x)
(x ∈ [x, xj ]) (3)

Figure 1 depicts the equilibrium bidding functions for the parametrization utilized

in our experiment where x = 50, xi = 90 and xj = 110. The solid lines in the figure

are, however, not exactly the equilibrium bids in our experiment. To keep things simple

we allow for only stepwise linear bids in the experiment. This is no serious problem in

the symmetric case since there equilibrium bids are a linear function. It is, however, a

problem in the asymmetric case. With the stepwise linear bids we use in the experiment

the equilibrium bids are the dashed lines shown in the figure. Whenever we refer to

equilibrium bids below we take this restriction into account.
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Expectations, best replies and bids are for eight symmetric (left panel) and for eight asymmetric
bidders (right panel) in round 7 of two sessions on 12 May 2005 and on 2 November 2009 respectively.
A bidder’s type in the asymmetric treatment, weak or strong, can be inferred from the domain of the
best reply schedules that are indicated as dashed lines. For weak bidders the domain of valuations is
[0, 40] and for the strong bidders it is [0, 60].

Figure 2: Examples for expectations, best replies, and bids

2.3 Expectations and best replies

The derivation of equilibrium bids distinguishes between two steps of reasoning indepen-

dent of the symmetric or the asymmetric auction case. First, bidders form expectations,

bexp in the symmetric auction and bexp
w or bexp

s in the asymmetric auction, about the bid-

ding function of their opponent; in the risk neutral Bayesian Nash equilibrium we have

bexp = b∗ in the symmetric auction and bexp
w = b∗s and bexp

s = b∗w in the asymmetric auc-

tion. Then bidders determine a best reply, bopt|exp in the symmetric auction and b
opt|exp
w

or b
opt|exp
s in the asymmetric auction, given these expectations and play this best reply;

in equilibrium also bopt|exp = b∗ or b
opt|exp
w = b∗w and b

opt|exp
s = b∗s. Figure 2 shows some

examples of expected opponent’s bidding functions bexp observed in our experiment to-

gether with the hypothetical best reply bopt|exp, and the bids b actually submitted in the

experiment. The left graph shows a treatment with symmetric valuations, the graph

on the right shows a treatment with asymmetric valuations. The examples illustrate a

general property: In the experiment bids b clearly differ from best replies bopt|exp.

In section 3 we describe an experiment that allows us to observe the two steps of this

decision process, i.e. expectations (which imply best replies) together with actual bids.

Once we observe these two steps together, we can better understand why bids deviate
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from risk neutral Bayesian Nash equilibrium bids. We will be able to distinguish between

two types of bidders: bidders who form expectations which are systematically wrong

but whose best replies against these expectations are correct (similar to the bidders

proposed by Crawford and Iriberri (2007)), and bidders with correct expectations who

submit bids which are not risk-neutral best replies.

With this exercise we do not aim to provide a complete and correct description of

the thought process of real individuals. Instead we follow the structure of equilibrium

derivation within the context of expected utility theory. Therefore, we can only find out

where the standard equilibrium model of bidding behaviour provides a good approxi-

mation of human behaviour and where it does not. By decomposing this model into two

steps we can, however, learn more than by only observing bids without expectations.

2.4 Level-k reasoning

By observing bids and expectations together we can also take another look at models

of iterated strategic reasoning introduced by Stahl and Wilson (1995) and Nagel (1995)

and applied to auctions by Crawford and Iriberri (2007). There are two interpretations

of the iterated strategic reasoning model that differ in the response of a level-k type to

the lower-level types L(k − 1),. . . , L0. While Stahl and Wilson (1995) and Camerer

et al. (2004) assume a level-k type to best-reply to a distribution of all lower-level types,

Nagel (1995), Costa-Gomes et al. (2001) and Crawford and Iriberri (2007) assume a

level-k type to best-reply to the level-(k − 1) type only. In the following we briefly

report how the level-k types behave in our symmetric and asymmetric auctions under

either interpretation noting that not much can be gained from assuming responses to a

non-degenerate distribution of lower levels in our setting.2

2.4.1 Level-k playing level-(k − 1) only

Following Crawford and Iriberri (2007) when moving from a complete information set-

ting to an incomplete information setting, the simplest player in their model of level-k

thinking, the L0 player, is the starting point of a player’s strategic reasoning. If this

player is ‘random’, the player chooses all bids between the smallest possible valuation

and the highest possible valuation with equal probability. If this player is ‘truthful’,

the player always bids the own valuation. With our distribution of valuations both

such types imply the same uniform distribution of bids. It is straightforward to show

that equation (1) describes the best reply if expected bids are uniformly distributed on

2For the derivations of the level-k best replies see appendix A
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support [0, b] and if the best-reply according to equation (1) does not exceed b.

For our symmetric auction, it immediately follows that the best reply of L1 against

an L0 player is the bid given by equation (1). L0 players choose all bids from their

possible range with equal probability. L1 players do the same for their expectations but

choose a best reply against L0 (that coincides with the equilibrium bid). L2 and higher

order players have expectations and bids given by equation (1). Thus, our experiment

allows to distinguish between L0, L1, and L2 and higher order players in the symmetric

setting.

In the asymmetric setting a weak bidder competes with a strong bidder leading to

two variants of any Lk: weak Lk and strong Lk. Due to the asymmetric nature of

the auction weak Lk best-replies to strong L(k− 1) and strong Lk best-replies to weak

L(k − 1). Analogously to the reasoning in the symmetric auction, weak L1 and strong

L1 expect uniformly distributed bids on the valuation range of strong L0 and weak L0

players, respectively, leading to best replies given by (1). The same reasoning applies

to weak L2 players, but there is a twist for strong L2 players. There is a continuum

of strong L2 types that would, if following (1), submit suboptimal bids exceeding the

largest bid of the competitor bwL1. For these types a boundary solution emerges where

it is optimal to bid bwL1. As a result, strictly positive probability mass concentrates at

bwL1 while probability density is distributed uniformly on [0, bwL1). With continuous

bids, there does not exist a best reply to strong L2 bidding due to the discontinuity of

the cumulative distribution function of expected bids so that bids are not defined for

weak L3. Bids and expectations of strong L3 players are well-defined and coincide with

those of strong L2 players but do not exist beyond this level. Therefore, both variants

of L0, L1, and L2 bidders behave in the same way as if playing the symmetric auction

except of strong L2 bidders with a value of x ≥ xw bidding bwL1.
3

2.4.2 Level-k playing a lower level distribution

In the symmetric auction, the best replies of any level Lkmix
4 are indistinguishable from

the best replies of Lk. Both variants of the level-k-model differ in the expectations held

by types of levels L2 and higher only.5 While levels L2+ believe to play against risk-

neutral equilibrium bids for sure as outlined above, levels L2+mix believe to play against

L0-bids with strictly positive probability and to play against risk-neutral equilibrium

3The emergence of a discontinuous cumulative distribution function of bids is independent of the
parameterisation of the asymmetric auction and occurs with uniform distributions either at level strong
L1 or latest, as in our case, at the level of strong L2.

4We use the subscript ’mix’ to identify the levels when playing against a distribution of lower levels.
5For simplicity we denote the statement ’levels Lk and higher’ by Lk+.
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bids submitted by any level L1+mix with the residual probability. Further, levels L1+mix

differ from one another in the probability of expecting to face L0-bids only due to

indistinguishable best reply functions of any type higher than L0mix.

In the asymmetric auction, the assumption of playing against a distribution of lower

levels does not affect best replies much either. The only difference in bidding applies

to strong L2mix (and likewise to strong L3mix) if the probability of facing L0-bids, λ,

is rather large, λ ∈ (2/3, 1). In this case the flat part of the best reply function of

strong L2 (hencforth sL2) ”shortens” and is joined by a strictly increasing part. Due

to the flat part, probability mass concentrates on a single bid so that the best replies

for higher level are not defined here, too. Analogously to the case of the symmetric

auction, expectations of levels weak/strong L1+mix only differ from one another in the

probability of expecting to face L0-bids or risk-neutral equilibrium bids.

3 Experimental setup

We use the strategy method to observe bidding functions in a way similar to Selten and

Buchta (1999), Güth et al. (2003), Pezanis-Christou and Sadrieh (2003), Kirchkamp

and Reiß (2004), and Kirchkamp et al. (2009). Other experiments that use this method

(see Kirchkamp et al., 2009; Kirchkamp and Reiß, 2004) show that bidding behaviour

that is observed with the strategy method is very similar to the behaviour observed

with alternative methods. The strategy method allows us to observe bidding functions

in much more detail. More importantly, it lends itself also to observe expectations.

We compare five treatments. The first four of them base on symmetric valuations,

the fifth one uses asymmetric valuations:

no expectations In this treatment we only elicit bids. This is our baseline treatment.

The only payoff in the treatment is the profit in the auctions.

expectations In this treatment we elicit bids and expectations. The payoff in this

treatment is the profit in the auctions plus a reward for precision of expectations.

expectations with info Here we elicit bids and expectations and give feedback about

the precise bidding function of the opponents. As in the previous treatment the

payoff in this treatment is the profit in the auctions plus a reward for precision of

expectations.

computerised opponents In this treatment bidders do not compete against humans

but against a computer with an announced bidding function. In each round the
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independent
observations

participants

asymmetric 8 70
computer opp. 17 17

expectations 8 74
expectations w. info 11 102

no expectations 12 116
all 56 379

Table 1: Overview of treatments

computer uses a new bidding function that is taken from a randomly selected

player who participated in the ‘expectations with info’ treatment that we con-

ducted earlier.

asymmetric In this treatment the distribution of valuations differs across bidders.

Everything else is analogous to the ‘expectations with info’ treatment.

All experiments were conducted between 12/2003 and 11/2009 in the experimental

laboratories at the SFB 504 in Mannheim, at MaXLab in Magdeburg, and at the

University of Jena. A total of 379 subjects participated in these experiments. The

average profit of a participant was 10.46¤ with a standard deviation of 4.64¤.

Table 1 gives an overview. A detailed list of the sessions is provided in appendix

B, the experimental procedure is described in appendix E. The software we used was

z-Tree Versions 3α and 3.3.6 (the final version is documented in Fischbacher, 2007). In

each treatment subjects first received written instructions, then they answered a quiz

on the computer screen to make sure that they understood the instructions. Thereafter,

they played twelve rounds of the actual experiment. In each of these rounds participants

were matched randomly in groups of two. Each group participated in five simultaneous

auctions. All treatments concluded with a questionnaire and the payment of subjects

in cash.

Input of bidding functions: This stage was common to all treatments. Subjects

would submit their own bidding function and, in the treatment with expectations,

the expected bidding function of their opponent. The smallest valuation in the

experiment was always x = 50. The largest valuation was x̄ = 100 for the

symmetric treatments. In the asymmetric treatments we had x̄ = 90 for the

weak and x̄ = 110 for the strong bidder. In each round participants enter bids

for six valuations with symmetric bidders and for four or seven valuations with

asymmetric bidders. All valuations are equally spaced between x and x̄ in steps

of 10. Bids for all other valuations are interpolated linearly.
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Round: 1 of 12 Remaining time [sec]: 113

You receive 0 ECU if you make the smallest bid in an auction
The other bidder receives 0 ECU if he makes the smallest bid in the auction

Your valuation will be a number between 50 and 100
The valuation of the other bidder will be a number between 50 and 100.

0
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40
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70
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90

100
110
120

50 60 70 80 90 100

Valuation [ECU]

Bid [ECU]

b

b

b

b

b

b

Please indicate your bidding function
depending on the valuation that is still

going to be determined
For a valuation of 50 ECU I bid: 46.2

For a valuation of 60 ECU I bid: 56.26

For a valuation of 70 ECU I bid: 65.7

For a valuation of 80 ECU I bid: 76

For a valuation of 90 ECU I bid: 84.35

For a valuation of 100 ECU I bid: 95

Draw bids

Finish input stage

Figure 3: Stage 1: A typical input screen in the ‘no expectations’ treatment (translated
into English)

A typical input screen for the ‘no expectation’ treatment is shown in figure 3. A

typical input screen for the treatments with expectations is shown in figure 4. The

input screen for the ’computerised opponents’ treatment is similar to that of the

’expectations’ treatment depicted in figure 4 where the selected bidding function

used by the computerised opponent is announced numerically and graphically on

the right side of the screen, replacing the expectation elicitation area.

In this paper we always discuss normalised valuations where the smallest valuation

is 0 and the largest valuation is x̄ − x.

Auction feedback: When all participants have determined their bidding functions

they move on to the auction feedback stage. In this stage they play five inde-

pendent auctions, i.e. the computer draws five pairs of random and independent

valuations for each pair of participants. In each of these five independent auctions

the winner is determined and the profit of each player is calculated. The sum of

the profit of these five auctions is the total auction profit gained in this round. We

play five auctions for two reasons: First, multiple auctions and, hence, multiple

valuations, may help participants to think carefully about all parts of their bid-

ding function. Second, and more importantly, playing multiple auctions reduces

a substantial part of risk. Kirchkamp, Reiß, and Sadrieh (2006) systematically

explore the approach of playing multiple auctions with a given bidding function
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Round: 1 of 12 Remaining time [sec]: 113

You receive 0 ECU if you make the smallest bid in an auction
The other bidder receives 0 ECU if he makes the smallest bid in the auction

Your valuation will be a number between 50 and 100
The valuation of the other bidder will be a number between 50 and 100.
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Bid [ECU]
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b
b
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Draw here your bidding function de-
pending on the valuation that is still
going to be determined

Draw here what you expect the bidding
function of the other player to look
like

Draw all bids Finish input stage

Figure 4: Stage 1: A typical input screen in the two ‘expectations’ treatments (trans-
lated into English)

and find that playing multiple auctions, indeed, induces bidders to behave in a

more risk neutral way. They also find that already a small number of auctions

played eliminates a substantial part of risk.6 To keep things simple we rely on only

five auctions in this experiment. A typical feedback screen is shown in figure 5.

Expectation feedback: In the expectation treatments players are informed about the

precision of their expectations in the last stage of each round.

• In the baseline treatment ‘no expectations’ the last screen in each round only

shows the total payoff of the current round.

• In the treatments ‘expectation with info’ and ‘asymmetric’ the last screen in

each round is similar to the one shown in figure 6. A graph on the left shows

the expected bid and, additionally, also the actual bid of the opponent. A

small table on the right summarises the auction profit, the average difference

between the expected bid and the actual bid, and the total payoff.

6Engelbrecht-Wiggans and Katok (2007b) run a different experiment where participants bid against
computerised bidders instead of human opponents. In their setting elimination of risk does not have a
significant impact on bidding behaviour.
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Round: 1 of 12 Remaining time [sec]: 113

You receive 0 ECU if you make the smallest bid in an auction
The other bidder receives 0 ECU if he makes the smallest bid in the auction

Your valuation will be a number between 50 and 100
The valuation of the other bidder will be a number between 50 and 100.
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Auction 1
Your randomly determined valuation is 77.89 ECU.
According to your entered bidding function you make a bid of 74.46 ECU.
You entered the smaller bid. The other bidder has made a bid of 82.24 ECU.
Your income from this auction is 0 ECU.

Auction 2
Your randomly determined valuation is 62.5 ECU.
According to your entered bidding function you make a bid of 58.06 ECU.
You entered the smaller bid. The other bidder has made a bid of 82.6 ECU.
Your income from this auction is 0 ECU.

Auction 3
Your randomly determined valuation is 73.25 ECU.
According to your entered bidding function you make a bid of 69.66 ECU.
You entered the larger bid.
Your income from this auction is 3.59 ECU.

Auction 4
Your randomly determined valuation is 67.94 ECU.
According to your entered bidding function you make a bid of 64.15 ECU.
You entered the smaller bid. The other bidder has made a bid of 72.02 ECU.
Your income from this auction is 0 ECU.

Auction 5
Your randomly determined valuation is 65.64 ECU.
According to your entered bidding function you make a bid of 62.7 ECU.
You entered the larger bid.
Your income from this auction is 2.94 ECU.

Your income from all auctions in this round is 6.53 ECU

Continue with the expectations

Figure 5: Stage 2: A typical feedback screen (translated into English)

Round: 1 of 12 Remaining time [sec]: 113

You receive 0 ECU if you make the smallest bid in an auction
The other bidder receives 0 ECU if he makes the smallest bid in the auction

Your valuation will be a number between 50 and 100
The valuation of the other bidder will be a number between 50 and 100.

0
10
20
30
40
50
60
70
80
90

100
110
120

Valuation: 50 60 70 80 90 100

Bid [ECU]

b

b

b

b
b

b

b
b

b

b
b

b

Your expectation of the bidding func-
tion of the other bidder is shown as a
solid line.
The bidding function of the other
bidder is shown as a dashed line. The
average difference is 5.43.
Your net profit in this round is:
income from auctions: 6.53 ECU
loss from expectation: -1.63 ECU
Total: 4.90 ECU

Continue with the next round

Figure 6: Stage 3: Expectation feedback in the expectation with info treatment
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• In the ‘expectation’ treatment (without info) the only difference is that the

graph on the left displays only the player’s own expectation and not the

actual bidding function of the opponent.

To incentivise participants’ expectations we use the average of absolute differences

between the actual bid of the opponent and the expected bid at the six points

(symmetric treatments) or at the five or seven points (asymmetric treatments)

where bids and expectations were made.

δexp ≡ 10

x̄ − x + 10

∑

x∈{50,60,...,x̄}

|bx − be
x|

The average deviation δexp is multiplied by a conversion factor of 0.3 and then

subtracted from the auction profit. The incentivisation implied by this rule is

non-trivial; for the average participant, the total amount of income lost due to im-

precise expectations is 12% of average total auction income. Given the widespread

view that the degree of incentivisation reduces noise in the elicited data (Blanco

et al., forthcoming, p. 3), supported by the findings7 of Gächter and Renner

(2010), we expect our expectations data to be non-arbitrary.

Point expectations and probabilistic expectations When introducing our

method to elicit expectations, we implicitly assumed that individuals expect their op-

ponents to use one specific bidding function bexp. We call this a point expectation.

More generally, a player might be uncertain about the specific bidding function of the

opponent. This player might, e.g., expect to face an opponent with a bidding function

bexp
1 with probability 1

2
and to face an opponent with another bidding function bexp

2

again with probability 1
2
. A player might even have in mind an entire distribution over

the space of all opponent’s bidding functions. We call this a probabilistic expectation.

Notice that a bidder with probabilistic expectations faces the same bid submission prob-

lem as a bidder with point expectations who plays against the average bidding function

(where the averages are taken along the opponent’s bids).

Since we are paying players according to their absolute deviations from the oppo-

nent’s bidding function, players with probabilistic expectations should report as expec-

tations in our experiment a least absolute deviation estimator, which is the median

7In a standard public goods game, Gächter and Renner (2010) compare expectations about the
contribution behaviour of other participants elicited in an incentivised way to non-incentivised expec-
tation data and find that incentivisation significantly increases the accuracy of expectations and that
non-incentivised expectation data are not completely arbitrary.
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expected bid.

Thus, as long as the difference between median and mean bidding functions is small,

the expected bid reported by a payoff maximising bidder is close to the one that this

bidder uses to calculate the best reply. To assess the order of magnitude of the problem

at least approximately, let us assume that bidders apply the true distribution of bidding

functions. Indeed, this distribution has a small negative skew. Medians are smaller

than means by about 1.8% of the range of valuations (the size of the deviation does not

depend much on the valuation). Thus, any deviation between reported expectations

and bids of that magnitude is still perfectly rational.8 We will, however, find that

deviations are substantially larger.

Even if mean expected bids deviate substantially from median expected bids the

incentive to hedge is small. The loss for reporting other than median expectations and

optimising against other than mean expectations is large, and the profit from hedging is

very low unless the distribution is extremely asymmetric and participants are very risk

averse. Furthermore, Blanco et al. (forthcoming) systematically inquire into hedging

effects in a belief elicitation experiment and find no behavioural cross-over effects from

the elicitation task to the studied game. Hence, we do not expect hedging to be a

problem. In the following we will disregard the problem of distributions of expectations

and assume that bidders have point expectations of opponent’s bidding functions.

4 Method and internal validity

Given the novelty of our experimental design we extensively check whether we actually

measure what we intend to measure. Do participants understand the experiment, have

they carefully thought about their expectations, and do they take their expectations

into account when constructing their bids? To gain a first impression, figure 2 on page 6

shows some examples for bids and expectations observed in our experiments. In section

4.1 we check convergence of behaviour. Section 4.2 investigates treatment effects. In

section 4.3 we examine whether participants in the experiments form reasonable expec-

tations and section 4.4 explores whether bids follow actually best replies given these

expectations. Only after all of these robustness checks are carried out with satisfying

results we present our main findings in section 5.

8Note that the actual deviation of median and mean bidding functions for any participant form-
ing probabilistic expectations can be either smaller or larger depending on the subjectively expected
distribution of bidding functions that might deviate from the true one.
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Figure 7: Convergence of bids and expectations

4.1 Convergence

The experiment is divided into 12 rounds. Figure 7 illustrates convergence of bids and

expectations in the five different treatments.

A natural reference point for players’ bids b are risk neutral Bayesian Nash equilib-

rium bids bBNE. The left graph in Figure 7 shows the median of absolute equilibrium

deviations |b − bBNE| over the course of the experiment for all treatments. While the

distance between experimental bids and equilibrium decreases during the first three or

four rounds of the experiment it does not change very much during the second half of

the experiment and remains considerably high, so that equilibrium deviations neither

disappear over time nor substantially fluctuate. We take the stability of experimental

bids as good news and an indication that, after a few initial rounds, players largely

absorbed the experimental environment and the auction setting.

Another way to check for consistency and for stability of bids and expectations is

to utilize their distances in any round of the experiment to their counterparts observed

in the last round. Convergence requires the distance of a round’s bid (expected bid)

function to the one observed in the last round to decrease over the course of the ex-

periment. The graph in the middle of Figure 7 shows the median distance of bids to

their counterpart in the last round. Similarly, the graph on the right side does the same

for expectations. We see that for all treatments, except the one with computerised

opponents, bids and expectations approach the schedules submitted in the last round

monotonically, providing further evidence for fairly consistent and stable behaviour in

the second half of the experiment. The visibly slower convergence in the treatment

with computerised opponents might hint that a situation with computerised opponents
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Figure 8: Median overbidding

is perhaps not as easy to understand and to play for participants in the lab as a treat-

ment with human opponents.

4.2 Treatment effects

Do the different treatments we use affect bidding behaviour? Figure 8 compares median

overbidding relative to the RNBNE under the five treatments. In equilibrium we should

observe no overbidding, i.e. a horizontal line. The upward-sloping lines for the five

treatments confirm a finding reported in many previous studies: there is overbidding

for large valuations in all treatments.9 We see that median bids are very similar in

all five treatments. Overbidding is, if at all, even more pronounced in the symmetric

treatments with expectation elicitation. To test this formally we estimate the following

mixed effects model:

bikt(x) = β∗ · b∗(x) +
∑

T

βT · dT + β0 + νi + νk + ǫiktx (4)

where bikt(x) is the bid of participant i in session k in round t for valuation x, b∗(x) is the

Bayesian Nash Equilibrium bid for valuation x, dT is the treatment dummy where ‘no

expectations’ is the baseline, νi is the random effect for the participant, νk is the random

effect for the session, and ǫiktx is the residual. Table 2 presents estimation results. The

9Overbidding for the asymmetric case is documented in Güth et al. (2005) and Pezanis-Christou
and Sadrieh (2003).
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β σ t p value 95% conf interval
(Intercept) -7.32 0.581 -12.6 0.0000 -8.46 -6.18
β∗ 1.7 0.00624 272 0.0000 1.69 1.71
expectations 1.84 0.908 2.03 0.0427 0.0609 3.62
expectations w. info 1.78 0.801 2.23 0.0260 0.213 3.35
computer opp. 1.43 1.24 1.15 0.2510 -1.01 3.87
asymmetric 0.132 0.889 0.148 0.8822 -1.61 1.87

Standard deviations, t-statistics, p-values, and confidence intervals are based on a parametric bootstrap
with 1000 replications.

Table 2: Mixed effects estimation of equation 4

results confirm a small treatment effect on overbidding in the symmetric treatments

‘expectations’ and ‘expectations with info’. Both treatment dummies are significant and

indicate slightly more overbidding than is observed in the ‘no expectations’ treatment.

Restricting the estimation of equation (4) to first round data only yields, however,

insignificant treatment dummies. Accordingly, expectation elicitation does not affect

bidding behaviour per se.

In addition to analysing overbidding relative to the RNBNE, our experimental design

allows us to assess overbidding relative to participants’ expectations regarding bidding

behaviour of competitors.10 To investigate overbidding relative to expectations in more

detail, we estimate the following mixed effects model,

bikt(x) − bexp
ikt (x) = β0 + βx · x +

∑

T

βT · dT + νi + νk + ǫiktx (5)

where the dependent variable is the difference between the bid and the expectation of

participant i in session k in round t for valuation x, dT is the treatment dummy where

‘no expectations’ is the baseline, νi is the random effect for the participant, νk is the

random effect for the session, and ǫiktx is the residual. Table 3 presents estimation results

separately for all periods, for the first, and for the second half of the experiment. We see

there is overbidding of expectations for small values as indicated by the significantly

positive intercept. But overbidding of expectations decreases in the value and turns

negative for intermediate and large values so that participants underbid expectations

for values not too small. There is no significant difference in overbidding of expectations

when introducing feedback on expectations.

The behaviour of the weak bidder changes considerably during the experiment.

While initially weak bidders clearly and significantly underbid, they learn, in line with

10Our thanks to an anonymous referee for pointing this out. Note that we explore overbidding
relative to optimal bidding given participants’ stated expectations in section 5.1 ‘Main Results’.
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all Periods Period≤ 6 Period> 6
(Intercept) 0.935∗ 1.098∗ 0.772∗

[0.151; 1.719] [0.157; 2.039] [0.003; 1.541]
βx −0.047∗∗∗ −0.035∗∗∗ −0.059∗∗∗

[−0.053;−0.041] [−0.044;−0.027] [−0.066;−0.052]
with info 0.358 0.036 0.681

[−0.628; 1.345] [−1.130; 1.203] [−0.299; 1.660]
asymmetric 0.362 −0.080 0.669

[−0.731; 1.455] [−1.435; 1.275] [−0.414; 1.751]
weak −0.184 −0.707∗ 0.608∗

[−0.560; 0.192] [−1.325;−0.089] [0.110; 1.105]
Deviance 110962.797 57018.379 52727.311
indep.obs. 27 27 27
participants 246 246 246
N 16872 8436 8436

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 · 0.1. 95% confidence intervals are shown in square brackets
below coefficients.. Standard deviations, t-statistics, p-values, and confidence intervals are based on a
parametric bootstrap with 1000 replications.

Table 3: Mixed effects estimation of equation (5)

the equilibrium prediction, to bid more agressively than the expected bid of their strong

opponent.

4.3 Quality of expectations

In our experiment subjects have an incentive to submit precise expectations. The

larger the deviation of their expectation from their opponent’s true bidding function,

the smaller is their payoff. To analyse the quality of our participants’ expectations

we proceed in three steps: First, we show that expectations are, indeed, close to me-

dian bids. Second, we show that bidders actually learn. Their expectations react to

changes in their opponents’ bids. Third, we report how expectations respond to detailed

feedback on the other bidder’s bidding strategy.

The left graph in Figure 9 shows, for the different valuations, median bids and me-

dians of expected bids for both expectation treatments. We see that, for all treatments,

points are close to the 45◦ line, i.e. median expectations do not deviate much from

median bids. To better understand individual heterogeneity we estimate individual

expectations as a function of median bids b̄t(x) for each round, treatment, and valua-

tion. A participant who knows everything about bidding in this experiment, except the

identity of her opponent should submit b̄t(x) as expectations.11

11As above we did the same exercise with mean bids to obtain basically the same result. Since
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The left graph shows median expectations over median bids. In a treatment where expectations would
match bids exactly the graph would show five line segments on the 45 degrees line.
The right graph shows the relative frequency of bids equaling expectations. Large frequencies of
bidders with the bids identical to expectations might suggest that bidders simply copy their bids to
their expectations.

Figure 9: Bids and expectations

For each individual i in treatment k we estimate

bexp
ikt (x) = β1

ik b̄t(x) + β0
ik + uiktx . (6)

If expectations were always in line with actual bidding behaviour, we had β1
ik = 1

and β0
ik = 0. Figure 10 shows the estimated coefficients for each individual separately

and 95% confidence ellipses for each treatment. Individual estimates of β0 and β1 are

denoted with“+”. The estimates’ position of a hypothetical L1 bidder with expectations

that assume L0 bidding of the competitor is marked with “◦”. The estimates’ position

of a hypothetical bidder with equilibrium expectations which coincide with bidding

of L1, L2, and any higher level player in the symmetric case) is indicated by “∗”.
“Correct” expectations which coincide with actual bidding, i.e. β0 = 0 and β1 = 1, are

located at the intersection of the two dotted lines. We see that in all three treatments

with expectation elicitation, bidders form, on average, neither näıve nor equilibrium

expectations. Instead, expectations are, at least on average, consistent with actual

bidding behaviour. A comparison of both symmetric expectations treatments, left and

middle panel of figure 10, suggests that feedback on actual bidding by competitors

medians are less vulnerable to outliers we are concentrating on medians here.
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Figure 10: Individual estimates and 95% confidence ellipses for equation (6)

allows participants to form more precise expectations. In the asymmetric treatment it

seems somewhat more difficult to form precise expectations.

Equation (6) allows us to assess the quality of expectations, but it does not reveal the

causality between bids and expectations. A priori it is not obvious whether participants

really have a good model of the behaviour of the population in mind or whether they

use such a model to form reliable expectations. In the worst case participants might

even follow the näıve procedure of copying the own bid into the expectation graph.

But contrary to this possibility, almost none of the participants followed the copy-paste

procedure. In the symmetric treatments ‘expectations’ and ‘expectations with info’

where direct copy-paste is possible, there are only 3.11% out of 2112 instances where

the bidding schedule submitted coincides with the expectation schedule. The right

graph in Figure 9 shows that the share of copy-paste observations starts with already

small values at the beginning of the experiment and soon drops to negligibly small

amounts.

To further inquire into the sophistication of bidders when forming expectations,

we exploit that they are informed about the bidding schedule of the opponent in the

treatments ’expectation with info’ and ’asymmetric’ and quantify the extent to which

they use this information. Since bidders are matched in every round with a new random

opponent, the bidding function of the opponent in the current round is not a perfect

predictor for the opponent in the next round. Nevertheless, it provides new information

about the distribution of bidding functions in the population. We use the opponent’s

bid as an explanatory variable for expectations and estimate the following equation in
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(7) (8)
(Intercept) 0.315∗∗ 0.281∗∗∗

[0.126; 0.505] [0.153; 0.410]
βother 0.047∗∗∗ 0.055∗∗∗

[0.040; 0.053] [0.047; 0.064]
βown 0.282∗∗∗

[0.264; 0.300]
Deviance 63239.878 58725.368
indep.obs. 19 19
participants 172 172
N 9950 9620

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 · 0.1. 95% confidence intervals are shown in square brackets
below coefficients. Confidence intervals and p-values are based on a parametric bootstrap with 1000
replications. N is smaller for equation (8) since in the asymmetric treatment expectations are not
always defined when bids are and vice versa.

Table 4: Mixed effects estimation of equations (7) and (8)

first differences12 jointly for all treatments with feedback about opponents’ bids:

∆tb
exp
ikx = βother · ∆t−1b

other
ikx + β0 + νi + νk + ǫiktx (7)

νi is the random effect for the participant, νk is the random effect for the session, and

ǫiktx is the residual.

A bidder with no prior expectations who weights information from n rounds equally

should have a βother close to 1/n. A bidder with strong prior expectations who is

convinced that nothing new can be learned from the current opponent should have a

βother = 0. Estimation results are reported in the left column of table 4. Detailed results

of treatment-specific estimations are provided in appendix C.

The coefficient of ∆t−1b
other
ikx is positive and significantly different from zero. Changes

in an opponent’s individual bidding function seem to have an effect on a bidder’s ex-

pectations for the next round.

Possibly a positive coefficient of ∆t−1b
other
ikx in equation (7) arises due to an indirect

effect where näıve bidders see opponents’ bids rise, in response increase their own bids

(without thinking about expectations), and then adjust their expectations in the same

way they adjust their bids. To test this, we add ∆tb
own
ikx as an explanatory variable in

equation (8).

∆tb
exp
ikx = βother · ∆t−1b

other
ikx + βown · ∆tb

own
ikx + β0 + νi + νk + ǫiktx (8)

12Since bexp

ikx
and bother

ikx
are possibly correlated, we cannot use absolute values.
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β σ t p value 95% conf interval
(Intercept) 0.336 0.0805 4.17 0.0000 0.178 0.494
βown 0.646 0.00804 80.4 0.0000 0.63 0.662
δ0 (exp. w. info) -0.1 0.111 -0.903 0.3665 -0.318 0.117
δown (exp. w. info) -0.168 0.0138 -12.1 0.0000 -0.195 -0.141
βother (exp. w. info) 0.0555 0.0051 10.9 0.0000 0.0455 0.0655

Standard deviations, t-statistics, p-values, and confidence intervals are based on a parametric bootstrap
with 1000 replications.

Table 5: Mixed effects estimation of equation 9

Analogously to specification (7), a bidder with no prior expectations who weights in-

formation about opponents from n rounds equally should have a βother close to 1/n and

a βown close to 1 − 1/n.

Estimation results are shown in the right column of table 4. Detailed results for

the different treatments are provided in appendix D. We see that, even if bidders are

allowed to follow the näıve strategy outlined, the coefficient of ∆t−1b
other
ikx is significantly

positive, i.e. bids of opponents directly affect expectations.

We conclude our analysis of the quality of expectations by reporting how detailed

feedback about other bidders’ strategies influences expectations. To this end we com-

pare expectations stated in the treatments ‘expectations’ and ‘expectations with info’

by estimating the following mixed-effects model:

∆tb
exp
ikx = β0 + δ0 dI + (βown + δown dI) ∆tb

own
ikx + βother dI ∆t−1b

other
ikx + νi + νk + ǫiktx (9)

where dI is the treatment dummy indicating if the observation was obtained in the

‘expectations with info’ treatment. Table 5 reports regression results. The highly sig-

nificant estimates of δown and βother show that knowledge of competitors’ bidding strate-

gies directs participants’ attention increasingly away from their own bidding behaviour

towards the bidding behaviour of others when revising expectations. A comparison of

expectations to median bids as illustrated by the left and the middle panel of figure 10

suggests that detailed feedback about bidding strategies used by other participants leads

to more homogeneous expectations. To formally test if expectations are less heteroge-

neous in the ‘expectations with info’ treatment than in the ‘expectations treatment’,

we inquire into the distance of expectations to median bids by estimating the following

mixed-effects model

|bexp
ikt (x) − b̄t(x)| = β0 + dI + νi + νk + ǫiktx (10)
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β σ t p value 95% conf interval
(Intercept) 5.36 0.367 14.6 0.0000 4.64 6.08
expectations w. info -1.24 0.456 -2.72 0.0065 -2.14 -0.348

Standard deviations, t-statistics, p-values, and confidence intervals are based on a parametric bootstrap
with 1000 replications.

Table 6: Mixed effects estimation of equation 10

where bexp
ikt (x) is the expectation of participant i in session k in round t for valuation

x, b̄t(x) is the median bid in round t and dI is the treatment dummy indicating if the

observation is from the ‘expectations with info’ treatment. The estimation results given

in table 6 clearly confirm that detailed feedback about others’ bidding strategies leads

to more homogeneous expectations.

To summarise: We find that bidders in the experiment form expectations which are

close to actual bids. These expectations follow to a significant amount the available

information about actual opponents’ bids. These findings are robust to dropping the

assumption of symmetric bidders as they emerge in our ‘asymmetric’ treatment as well.

Moreover, expectations are less heterogeneous if detailed feedback about competitors’

bids is provided.

4.4 Quality of reactions to expectations

Independently of the quality of expectations, equilibrium bidding also assumes bidders

to submit optimal bids given their expectations. To assess the descriptive power of

this assumption, we construct for each bidder and each round the best reply given

this bidder’s expectations bexp(x). We call this best reply bopt|exp(x). Since in our

experiment bids are stepwise linear we use a numerical procedure to find bopt|exp(x).13

Some examples are shown in figure 2 on page 6.

If a rational bidder’s expectations change, the bidder’s best reply given expectations,

bopt|exp, responds optimally, and bids b move accordingly. To explore how consistent

participants’ bidding behaviour is with changes in best replies, we compare actual bids

b with best replies bopt|exp and estimate the following equation in first differences for

each participant i separately.

∆tbiktx = β
opt|exp
∆ · ∆tb

opt|exp
iktx + β0 + uiktx . (11)

Results are shown in figure 11. Outliers have been eliminated using the BACON pro-

cedure (Billor et al., 2000).

13See appendix F for details on the numerical procedure.
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Figure 11: Individual estimates and 95% confidence ellipses for equation (11)

For a fully rational bidder we should find β
opt|exp
∆ = 1. For a bidder who is slow in

adapting and who also takes past experience into account, 0 < β
opt|exp
∆ < 1. Figure 11

shows that the degree to which bidders incorporate optimal responses to changes in

expectations into their bidding behaviour varies considerably. Nevertheless we find

β
opt|exp
∆ > 0 for most bidders so that an expectation-driven change of the best reply

triggers a change of bids into the same direction as that of the best reply. To test this

more formally, we estimate the mixed-effects model specified by equation (12) for each

treatment separately and also jointly.

∆tbiktx = β
opt|exp
∆ · ∆tb

opt|exp
iktx + β0 + νi + νk + ǫiktx (12)

As before, νi is the random effect for the participant, νk is the random effect for the

session, and ǫiktx is the residual. Results of the mixed effects estimation are shown in

Table 7. We see that, indeed, for all treatments, except the ‘expectations’ treatment,

confidence intervals for β
opt|exp
∆ are strictly between 0 and 1. Only in the ‘expectations’

treatment participants have a β
opt|exp
∆ > 1, i.e. they are slightly overreacting to their

best replies. Taken together, the reactions of bids in response to changed expectations

are meaningful and follow the optimal response as given by the change of the best reply

to a substantial amount.
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all asymmetric computer opp. expectations expectations w. info
(Intercept) 0.270∗∗∗ 0.735∗∗∗ 0.061 0.072 0.133

[0.144; 0.397] [0.338; 1.132] [−0.645; 0.767] [−0.157; 0.301] [−0.031; 0.297]
∆tb

opt|exp 0.659∗∗∗ 0.263∗∗∗ 0.177∗∗∗ 1.094∗∗∗ 0.930∗∗∗

[0.631; 0.686] [0.195; 0.331] [0.095; 0.259] [1.052; 1.135] [0.892; 0.967]
Deviance 117061.492 30902.458 8582.386 31728.315 42986.920
indep.obs. 44 8 17 8 11
participants 263 70 17 74 102
N 16958 4220 1122 4884 6732

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 · 0.1. 95% confidence intervals are shown in square brackets
below coefficients. Confidence intervals and p-values are based on a parametric bootstrap with 1000
replications.

Table 7: Mixed effects estimation of equation (12)

4.5 Experienced vs inexperienced subjects

According to the results of a post-experimental questionnaire, 102 out of the 379 sub-

jects had acquired experience with experimental situations in general by having partic-

ipated in other experiments prior to coming to our sessions. This raises the question

if experience has substantially affected our results. To check for robustness on this is-

sue, we included dummy variables that indicate experience and allowed for experience-

related changes in intercepts and slopes in our regressions. We found that our main

results essentially remain unaffected. Moreover, there were no significant differences in

earnings. Nevertheless we found that the experienced subjects overbid slightly more in

the baseline treatment ‘no expectations’ and that, in the treatments with information

feedback about the bidding strategy of other subjects, expectations of the experienced

bidders respond stronger to changes in the bids of others.

5 Results

In section 4 we have tested the reliability of our experimental framework. We have

shown so far that bids and expectations are stable, that the different treatments we use

to measure expectations affect bids only to a very small degree, that participants seem

to make a reasonable effort to make good expectations, and that they try to incorporate

these expectations into their bidding functions.
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Figure 12: Median bids, expectations, and best replies

5.1 Main results

In this section we compare bids and expectations with Bayesian Nash equilibrium.

As stated before, we do not aim at providing a complete and correct description of the

thought process of real individuals. We are rather restricting ourselves to the derivation

of Bayesian Nash equilibrium as our benchmark. In a first step we want to explore what

happens on the way from the equilibrium bid bBNE(x) to the best reply bopt|exp. In a

second step we want to understand how the best reply bopt|exp translates into the actual

bid b. Taken together, we aim at understanding whether deviations between actual and

equilibrium bids are rather due to non equilibrium expectations or whether they are

rather due to deviations from risk-neutral best replies.

Figure 12 introduces the major variables that we will discuss in this section: Equilib-

rium bids, actual bids, actual expectations, and best replies to these expectations. For

all of our treatments we find the same pattern: Bids are larger than equilibrium bids

for high values and lower than equilibrium bids for low values. While expectations are

rather close to median bids, see the left panel of figure 13, best replies to expectations

are lower than equilibrium bids for all values; best replies also seem quite far away from

actual bids for most values and all bidders as figures 12 and the right panel of figure 13

suggest.

27



5 10 15

0
.0

0
.2

0
.4

0.
6

0
.8

1
.0

Expected bids vs Median bids

averagei(|expectation − median bid|)

F
(x

)

expectations
expectations w. info
asymmetric

5 10 15

0
.0

0
.2

0
.4

0.
6

0
.8

1
.0

Bids vs Best replies given exp. bids

averagei(|bid − best reply|)

F
(x

)

expectations
expectations w. info
computer opp.
asymmetric

The figure shows the empirical distribution functions of average (per participant) distances between
expectations and median bids (left) and between actual bids and best replies to expectations (right).
An average distance of 1 unit (ECU) can be interpreted as a parallel shift of the expectations or best
reply schedule by one unit. A perfect fit between expectations and median bids or actual bids and best
replies corresponds to an average distance of zero.

Figure 13: Distances of expectations to median bids (left) and bids to best replies given
expectations (right)

We estimate the following two equations separately for each participant:

b
opt|exp
ikt (x) = βBNE · bBNE

ikt (x) + βBNE
0 + uiktx (13)

bikt(x) = βopt|exp · bopt|exp
ikt (x) + β

opt|exp
0 + uiktx (14)

In equation (13) we use the best reply bid bopt|exp(x) as the dependent variable. If

participants expect that their opponents use Bayesian Nash equilibrium bids, then

βBNE = 1 and βBNE
0 = 0. In equation (14) we regress the actual bid bi(x) on the

best reply bid bopt|exp(x). If a player chooses always the best reply given the expected

opponent’s bid then βopt|exp = 1 and β
opt|exp
0 = 0. Figure 14 shows the distribution of

the estimated coefficients.

Consider the coefficients estimated for equation (13). We see that for most partici-

pants βBNE ≈ 1 though intercepts βBNE
0 are clearly smaller than zero. The estimates of

βBNE and βBNE
0 are reflected in the median best reply in figure 12: The median of the

best replies is almost parallel to the equilibrium bid, but located slightly below. In other

words: Bidders seem to deviate in their expectations consistently from equilibrium bids.

However, the deviation we find would rather explain underbidding, not overbidding. At
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Figure 14: Individual estimates and 95% confidence ellipses for equations (13) and (14).

first sight this finding appears to be inconsistent with the regularity of overbidding as

most experimental bids are over, and not under the equilibrium bids. The reason for

the consistency of very low best replies bopt|exp(x) relative to equilibrium bids bBNE with

the standard finding of overbidding emerges from the estimation results for equation

(14) shown in the right part of figure 14. There it is easy to see that βopt|exp is larger

than one for most bidders. In figure 12 this reflects in the median bidding function that

is steeper than the equilibrium bid.

To test this more formally, we estimate equations (15) and (16) separately for each

treatment and also jointly:

b
opt|exp
ikt (x) = βBNE · bBNE(x) + βBNE

0 + νi + νk + ǫiktx (15)

bikt(x) = βopt|exp · bopt|exp
ikt (x) + β

opt|exp
0 + νi + νk + ǫiktx (16)

As before, νi is the random effect for the participant, νk is the random effect for the

session, and ǫiktx is the residual. Results of the mixed effects estimation are shown in

Tables 8 and 9. The estimation results confirm that βBNE
0 is significantly smaller than

zero, but βBNE is not significantly different from one. In other words, best replies to

expectations are below, not above, the equilibrium bids. In table 9 we see that βopt|exp

is clearly larger than one.

Let us summarise: We find that there are two effects that determine bidding be-

haviour. First: Bidders’ expectations are fairly accurate (see section 4.3). A best reply
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expectations expectations w. info computer opp. asymmetric all
βBNE

0 −3.681∗∗∗ −4.126∗∗∗ −3.401∗∗∗ −4.741∗∗∗ −4.111∗∗∗

[−4.402;−2.961] [−4.728;−3.523] [−4.371;−2.431] [−5.696;−3.787] [−4.471;−3.751]
βBNE 0.990∗∗∗ 0.994∗∗∗ 0.943∗∗∗ 1.018∗∗∗ 0.996∗∗∗

[0.978; 1.002] [0.985; 1.003] [0.904; 0.982] [1.004; 1.032] [0.989; 1.002]
Deviance 29915.997 39292.015 7825.298 29182.251 107075.939
indep.obs. 8 11 17 8 44
participants 74 102 17 70 263
N 5328 7344 1224 5040 18936

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 · 0.1. 95% confidence intervals are shown in square brackets
below coefficients. Confidence intervals and p-values are based on a parametric bootstrap with 1000
replications.

Table 8: Mixed effects estimation of equation (15)

expectations expectations w. info computer opp. asymmetric all

β
opt|exp
0 2.311∗∗∗ 2.120∗∗∗ 4.650∗∗∗ 2.882∗∗∗ 2.601∗∗∗

[1.379; 3.244] [1.349; 2.892] [2.907; 6.393] [1.497; 4.266] [2.121; 3.082]
βopt|exp 1.552∗∗∗ 1.638∗∗∗ 1.277∗∗∗ 1.396∗∗∗ 1.521∗∗∗

[1.531; 1.572] [1.620; 1.656] [1.219; 1.336] [1.360; 1.432] [1.506; 1.536]
Deviance 36182.928 50070.030 9338.025 39964.097 138483.758
indep.obs. 8 11 17 8 44
participants 74 102 17 70 263
N 5328 7344 1224 5040 18936

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 · 0.1. 95% confidence intervals are shown in square brackets
below coefficients. Confidence intervals and p-values are based on a parametric bootstrap with 1000
replications.

Table 9: Mixed effects estimation of equation (16)
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Figure 15: Distance of bids and expectations to level-k-bidders L0, L1 and L2

to these expectations leads to underbidding. Second: Bids are not best replies to bid-

ders’ expectations. This leads to overbidding. Since the second effect is stronger than

the first one we observe that most bids exceed equilibrium bids in the end.

5.2 Level-k analysis of data

Here we relate our data to level-k reasoning. Note that our experimental design implies

that any level-k-player with probabilistic expectations finds it optimal to state the

median expectation.

First suppose that each level Lk expects to face a player of level L(k − 1) for

sure. Our setting allows to distinguish between levels L0, L1, and L2 as described in

section 2.4. To quantify the proximity of observed bidding schedules and/or expectation

schedules relative to level-k predictions, we use averages (per participant) of the absolute

difference between the predicted schedule and the observed one.

The panel in the middle of figure 15 indicates the average distance of bids (horizontal

axis) and expectations (vertical axis) to L1 predictions. It is easy to see that there is

no single instance of L1-predictions fitting perfectly; rather, the data show that average

distances are quite large. The median of distances from bids to L1 is 8.54. This is

almost as much as the average distance from L0 to L1 bids, which is 12.5. Hence, L1

does not seem to give a very precise description of bidding behaviour.

The situation for L2 is shown in the right part of figure 15. Analogously to L1, bids

and expectations do not seem to be very well explained by L2. The median distance

for bids is 8.93.

For L0 bidders, there is no prediction regarding expectations. The left panel of

figure 15 shows empirical cumulative densities of the average distance of bids to L0

bids. Here the median is 9.99. Overall, the predictive power of L0, L1, or L2 appears
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similar and, in all cases, rather limited.

Now consider the iterated reasoning model with the assumption that level Lkmix

expects to face a distribution of lower levels such that the other player is possibly of

any type L(k − s)mix where s ∈ {1, 2, . . . , k}. First note that the left and the middle

panel of figure 15 trivially apply in the same way to this variant of the level-k model

since bids of L0mix and bids and expectations of L1mix are identical to those of their

counterparts L0 and L1.

In the symmetric auction, any player of level L2mix or higher bids in the same way as

L1 and L1mix. Levels L2+mix only differ in the probability of believing to face L0mix-bids

that is denoted by λ. With our expectation elicitation rule, it is optimal to state L0-bids

if λ ≥ 0.5 and to state risk-neutral equilibrium bids (played by any level beyond L0mix)

if λ ≤ 0.5. It follows that the data depicted in either the middle panel (for λ ≥ 0.5) or

that in the right panel (for λ ≤ 0.5) of figure 15 apply to any level beyond L1mix for the

symmetric auction. Similar reasoning applies to the asymmetric auction given that the

belief of facing L0-bids by level strong L2mix is not unreasonably large, i.e. λ < 2/3.

Hence the (modest) predictive power of the level-k model as outlined before is robust

to allowing for best-replies to non-degenerate bid distributions of lower levels.

6 Concluding remarks

In this paper we investigate whether systematic deviations from equilibrium bidding

behaviour in auctions are rather due to deviations from risk-neutral best replies that

are based on correct expectations or whether they are rather due to wrong expectations.

The first approach is quite standard and includes risk averse bidding behaviour, spite,

regret, or quantal response mistakes. The second approach has only recently been

employed by Eyster and Rabin (2005) and Crawford and Iriberri (2007).

Both explanations fit bidding behaviour in experiments. To distinguish between

these explanations we propose an experiment where we can observe expectations and

bids simultaneously. To keep things simple we use the context of a private value first-

price sealed-bid auction.

Given the novelty of the approach we have carefully checked the internal validity

of our setup. We have found that the expectations we measure are reliable, and that

expectations also react to information in a reasonable way.

The main result was presented in section 5: Both approaches that we mentioned

capture a part of the truth. Bidders make systematic mistakes in forming their expecta-

tions and in determining their strategy. However, we found that most of the deviations
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from equilibrium bids are not related to wrong expectations but to deviations from the

risk-neutral best reply against these expectations.

Our results for first-price auctions complement, thus, the findings of Costa-Gomes

and Weizsäcker (2008) for 3 × 3 games and of Offerman et al. (1996) for public good

games: In both situations, ours and theirs, expectations resemble actual strategies

fairly well. In both situations, however, strategies are not best replies to expectations.

Furthermore, our results are consistent with experiments with computerised opponents,

like Neugebauer and Selten (2006) or Charness and Levin (2009). These studies leave no

room for expectation formation regarding any other player’s strategy. Nevertheless, the

authors still find overbidding, which suggests that failures of best replies with standard

utility are also responsible for deviations from Bayesian Nash equilibrium. This message

is in line with our conclusion following from a completely different research strategy.

Our results also support the standard approach to explain deviations from risk

neutral Bayesian Nash equilibrium bids that requires bidding behaviour to be consistent

with expectations about bidding behaviour. Risk aversion, regret (see Filiz-Ozbay and

Ozbay, 2007), and spite (Morgan et al., 2003) are explanations that base on expectations

which are correct. We can show that, indeed, the major part of the deviation from

standard equilibrium is not due to wrong expectations regarding the strategies of other

bidders but happens on the reply side.

Our first main result that bidders form expectations consistent with the bidding

strategy of other bidders rules out that misperceived probabilities of winning the auc-

tion with some bid as implied by actual bidding behaviour (Armantier and Treich, 2009)

can be rationalised by misperceived bidding strategies used by other bidders. There-

fore, our finding that most equilibrium deviations are due to erroneous best replies is

reinforced by the findings reported in Armantier and Treich (2009).14 Our second main

result of erroneous best replies to accurate expectations is a tentative one as the iden-

14Note that it is argued in Armantier and Treich (2009, p. 1097) that ”. . . bidding behavior. . . may be
best explained by a model in which subjects tend to best-respond to their. . . beliefs”, but that they also
find, but do not emphasize in their paper, that actual bidding behaviour is way off best-responses to
stated probabilities as can be inferred from their figures 2 and 5. The reason why Armantier and Treich
(2009) seem to advance the virtue of ’subjective’ best-responses stems from their comparisons of various
quantal response models. In their comparison, models with ’subjective’ probabilities and risk-aversion
are reported to fit the data better than a model with risk-neutrality but no ’subjective’ probabilities.
These comparisons, however, are relative statements about the performance of one subjective belief
model while we entertain an absolute statement in our paper. Specifically, for any of the models
considered by Armantier and Treich (2009), there is a gap between actual bids and the bid predictions
of the model. The gap is reported to be smallest for a model with subjective probabilities as compared
to the gaps associated with the remaining models. In strong contrast, in our paper, our statement of
badly performing best responses to expectations is on the absolute size of the gap between actual bids
and best responses, not on the gap size in comparison to gap sizes found with other models. Therefore,
the conclusions of our paper and these reached by Armantier and Treich (2009) are consistent.
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tification of its sources lies beyond the scope of the current paper. To this end, the

studies Armantier and Treich (2009) and Dorsey and Razzolini (2003) suggest that one

reason for erroneous best-replies is connected to the handling of probabilities, particu-

lary when transforming the expected bidding strategies used by others (together with

the underlying distribution of valuations) into the probability distribution of winning

bids.

While Crawford and Iriberri’s (2007) model of level-k thinking can explain bids

or expectations when these are measured in isolation, we see that when we measure

bids and expectations together their combination is not consistent with any level of

k. Thus, our results are complementary to Ivanov et al. (2010) who experimentally

study a second-price common-value auction and find that the Winner’s Curse cannot

be explained by models of best-response behaviour to inconsistent beliefs.

When we observe accurate expectations and inaccurate best replies in the lab we

should keep in mind that forming precise expectations about opponents’ bids might be

easier in the lab than in real world auctions. Still, if the difference between bids and

best replies is large in the lab we should expect this difference to be significant in the

field as well.
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Wolf Ehrblatt, Kyle Hyndman, Erkut Y. Özbay, and Andrew Schotter. Convergence:

An experimental study of teaching and learning in repeated games. Journal of the

European Economic Association, forthcoming.

Richard Engelbrecht-Wiggans and Elena Katok. Regret in auctions: theory and evi-

dence. Economic Theory, 33:81–101, 2007a.

Richard Engelbrecht-Wiggans and Elena Katok. A direct test of risk aversion and regret

in first price sealed bid auctions. Mimeo, Penn State University, 2007b.

Erik Eyster and Matthew Rabin. Cursed equilibrium. Econometrica, 73(5):1623–1672,

2005.
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Simon Gächter and Elke Renner. The effects of (incentivized) belief elicitation in public

goods experiments. Experimental Economics, 13(3):364–377, 2010.

Jacob K. Goeree, Charles A. Holt, and Thomas R. Palfrey. Quantal response equilibrium

and overbidding in private-value auctions. Journal of Economic Theory, 104:247–272,

2002.
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A Derivation of level-k reasoning

We begin by defining the two-step uniform distribution that proves useful for character-

ising optimal bidding in the level-k model. Then we state a lemma that proves useful

when deriving the best reply functions of level-k. The two-step uniform distribution’s

definition nests the standard uniform distribution as a special case so that the lemma

applies to uniformly distributed bids directly. To ease the application of the lemma to

uniformly distributed bids, a corollary summarises the relevant results.
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A.1 Auxiliaries

Definition 1 (Two-step uniform distribution). Let g(b) denote a probability density

function with support [b, b] ⊂ R. Let A ≡ [b, b̂] and B ≡ (̂b, b] where b < b̂ < b and

assume that density g(b) is constant on either set, specifically, g(b) = δA > 0 if b ∈ A

and g(b) = δB > 0 if b ∈ B such that δA ≥ δB. The corresponding distribution function

is

G(b) =






0 if b < b,

δA (b − b) if b ∈ [b, b̂],

δA (̂b − b) + δB (b − b̂), if b ∈ (̂b, b],

1 otherwise,

(17)

where normalization implies δA (̂b − b) + δB (b − b̂) ≡ 1.

Remark: If the probability that a (two-step uniformly distributed) bid falling into inter-

val A is λ ≥ 0 so that the probability of the bid falling into interval B is 1−λ, then the

constant densities are given by δA = 1−λ

b̂−b
+ λ

b−b
and δB = λ

b−b
.

Lemma 1 (Best replies to two-step uniform bids). Let G(b) be a two-step uniform

distribution function and assume that bidder j submit bids in a first-price auction with

two bidders according to G(b). Then the (risk-neutral) best reply b∗(x) of bidder i with

value x ≥ b facing the bid distribution of bidder j is the solution of the maximization

problem maxb G(b) (x − b) and given by

b∗(x) =






0.5 b + 0.5 x if x ∈ [b, xb̂],

b̂ if x ∈ [xb̂, xb̂],

0.5 b + 0.5 x − δA−δB
δB

b̂−b

2
if x ∈ [xb̂, xb],

b if x > xb,

where xb̂ = 2b̂ − b, xb̂ = b̂ + δA
δB

(̂b − b) and xb = 2b + δA
δB

(̂b − b) − b̂.

Proof. Omitted.

Sketch of Proof :

[ This sketch of proof is intended for referees only and not for publication to economise

on space. ]

The first order condition of maximization problem maxb G(b) (x − b) is

G′(b∗) (x − b∗) = G(b∗)

and is necessary and sufficient for identifying a unique global maximum ∀b∗ ∈
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[b, b]\{b̂}.15 Substituting the probability density and the probability distribution func-

tions into the FOC yields

δA (x − b∗) = δA (b∗ − b) if b∗ ∈ [b, b̂)

δB (x − b∗) = δA (̂b − b) + δB (b∗ − b̂) if b∗ ∈ (̂b, b]

Solving both equations for b∗ leads to the best-reply functions stated in the lemma on

lines 1 and 3 where the boundaries are defined such that the domains of the FOC are

taken care of. (By defining the value of x that leads to a best reply of b̂ in either case.)

If value x is sufficiently high, i.e. x > xb, so that the FOC cannot be satisfied on [b, b]

(then the best-reply function on line 3 of the lemma implies a best-reply exceeding the

competitor’s largest bid b), there is a boundary solution such that the best reply is

given by b as stated on line 4 of the lemma.

It remains to show the result stated on line 2 of the lemma. For δA = δB distribution

G(b) reduces to a standard uniform distribution so that line 2 of the lemma is redundant

(=nested by line 1). Henceforth, let δA > δB. It is straightforward that ∀x ∈ (xb̂, xb̂),

the FOC cannot be satisfied. This is due to the fact that the LHS is discontinuous at b̂,

specifically, it jumps downward from δA(x− b̂) to δB(x− b̂), and that the LHS is always

strictly larger than the RHS for b < b̂ but strictly smaller for b > b̂. As a result, the

best reply is b̂ for all x ∈ (xb̂, xb̂). (On line 2 of the lemma, the interval is closed to

emphasize that the best-reply is continuous.)

Corollary 1. Let the competitor’s bids be uniformly distributed on support [b, b] and

let the probability density be given by δ = 1
b−b

. This bid distribution is a special case of

two-step uniform distributions with δA = δB = δ. The application of Lemma 1 implies

the best reply function for uniformly distributed bids that is given by:

b∗(x) =

{
0.5 b + 0.5 x if x ∈ [b, 2b − b],

b if x > 2b − b.

A.2 Derivation when level-k plays level-(k − 1) only

A.2.1 The symmetric auction

In the symmetric auction, the value distribution is U[50, 100] for any bidder. Let us

start from the anchor level L0 that bids truthfully, i.e., bL0(x) = x, implying uniformly

15For this note that the LHS of the FOC is monotonically decreasing from some strictly positive
number (depending on the density) to −∞ while the RHS of the FOC is monotonically increasing
from 0 to 1 as b monotonically increases from b to ∞. (Note that the FOC is, strictly speaking, not
differentiable at b and b, however, we use then its right-hand limit or left-hand limit respectively.)
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distributed L0-bids on [50, 100]. L1 expects this bidding behavior, bexp
L1 (x) = bL0(x),

and by corollary 1 the best reply is bL1(x) = 25 + 0.5x which coincides with RNBNE

bidding. Accordingly, L2 expects equilibrium bids, bexp
L1 (x) = bL1(x), that are uniformly

distributed on [50, 75]. By corollary 1 the best reply is bL2(x) = 25+0.5x. Analogously

L3 and any higher level form the same expectation as L2 and bid in the same way.

A.2.2 The asymmetric auction

In the asymmetric auction, the weak bidder’s value distribution is U[50, 90] while the

strong bidder’s one is U[50, 110]. In the asymmetric setting there are two versions of any

level, a weak one and a strong one, since a bidder knows whether she is weak or strong.

Here, the truthfully bidding anchor levels bid according to bwL0(x) = bsL0(x) = x so that

wL0-bids are uniformly distributed on [50, 90] while sL0-bids are uniformly distributed

on [50, 110].

Weak L1 expects his competitor to be sL0 and by corollary 1 his best reply is

bwL1(x) = 25+0.5x where bids are uniformly distributed on [50, 70]. Similarly bsL1(x) =

25 + 0.5x so that bids are uniformly distributed on [50, 80].

Weak L2 expects his competitor to be sL1 and by corollary 1 his best reply is

bwL2(x) = 25 + 0.5x where bids are uniformly distributed on [50, 70] again.

For strong L2, however, the best reply is more involved since sL2 expects wL1

submitting uniformly distributed bids on [50, 70] and never submits a bid exceeding the

largest bid of wL1, i.e. 70, so that corollary 1 implies

bsL2(x) =

{
25 + 0.5x if x ∈ [50, 90],

70 if x ∈ [90, 110].

Weak L3 expects that sL2’s bid is 70 with probability 1/3 and that the remaining

probability is uniformly spread over [50, 70], hence, the cumulative bid distribution

function is Bexp
wL3(b) = (b − 50)/30 for b ∈ [50, 70), Bexp

wL3(b = 70) = 5/6 due to fair

tie-breaking and Bexp
wL3(b > 70) = 1. Except of both jumps in probability at b = 70,

the maximisation problem is the same as that of, e.g., wL2. Here, however, we have to

verify if the expected payoff of that solution is a global maximum or if it is dominated

by a bid of 70 + ǫ. Indeed, for all x > 110 −
√

1200 ≈ 75.359, wL3 prefers to win the

auction for sure with a bid of 70+ ǫ (ǫ → 0).16 Since there always exists a smaller ǫ > 0

that allows to increase the expected payoff, the payoff-maximizing bid is undefined for

16If it is optimal to submit a bid smaller than 70, then the best reply is bo = 25 + 0.5x implying
expected payoff (bo − 50)/30 (x − bo) = (0.5x − 25)2/30. This falls short of the certain payoff of
x − (70 + ǫ) with ǫ → 0 for x > 110 −

√
1200.
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any x ∈ (110 −
√

1200, 90]. It follows that the best replies of strong L4, weak L5, etc.,

are not defined.

Strong L3 faces the same problem as strong L2, hence, bsL3(x) = bsL2(x) with

probability mass concentrating at a bid of 70 so that the best reply of weak L4 and

beyond are undefined, too.

A.3 Derivation when level-k plays a distribution of lower levels

When assuming that a player of level Lk plays against a distribution of lower levels, the

best replies of levels L0 and L1 coincide with their counterparts playing against L(k−1)

only. The lowest level that plays against a non-degenerated distribution of lower levels

is L2 expecting to face a competitor of either level L0 or L1.

For specifying the distribution of lower levels, we impose the consistency condition

of the cognitive hierarchy model implying that the probability of facing any lower level

L(k − s), s ∈ 1, . . . , k, as expected by Lk, coincides with the relative population share

of this level as prevailing in the population of players conditional on facing lower levels

only.17 In particular we denote the population share of level Lk by λLk ≥ 0 (
∑∞

k=0 λLk =

1) and the probability that a player of level Lk believes to face any lower level Ls

(s ∈ {0, . . . , k − 1}) by λLs
Lk = λLs∑k−1

j=0
λLj

.

A.3.1 Levels L2 and higher in the symmetric auction

The probability that L2 expects to face an L0-player is λL0
L2 > 0, bidding uniformly

on [50, 100], and the probability of facing an L1-player is 1 − λL0
L2, bidding uniformly

on [50, 75]. For simplicity, we suppress the index of λ in the following derivations

and reintroduce it where it matters. The bid distribution that L2 expects is two-step

uniform with b̂ = 75, δA = (2 − λ)/50, δB = λ/50 and follows from definition 1 as

Bexp
L2mix(b) =

{
2−λ
50

(b − 50) if b ∈ [50, 75],

1 − 2λ + λ
50

b if b ∈ (75, 100].

By lemma 1, the best reply of L2 to the distribution of L0- and L1-bidders is

bL2mix(x) = 25 + 0.5x (x ∈ [50, 100]),

where L2 submits uniformly distributed bids on [50, 75] as does L1.

17See Camerer et al. (2004), p.864f.
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By the consistency condition of beliefs, the probability that any level higher than

L2 expects to face L0 does not exceed the probability of L2 believing to face L0, i.e.

λL0
L2 ≥ λL0

Lk (k ∈ {3, . . . ,∞}). Therefore, any level higher than L2 also finds it optimal

to bid according to the best reply function of L2 (which is that of L1). Levels L1 and

higher differ only in the probability of believing to face L0 bids that, with increasing

level, converges from one (believed by L1) to the true population share λL0 (believed

latest by L∞) monotonically.

A.3.2 Levels L2 and higher in the asymmetric auction

Let the probability that weak L2 expects to face a strong L0-player be λsL0
wL2 > 0, bidding

uniformly on [50, 110], hence, the probability of facing a strong L1-player is 1 − λsL0
wL2,

bidding uniformly on [50, 80]. With suppressing the index, the distribution of bids that

wL2 expects is two-step uniform with b̂ = 80, δA = (2 − λ)/60, δB = λ/60 and follows

from definition 1 as

Bexp
wL2mix(b) =

{
2−λ
60

(b − 50) if b ∈ [50, 80],

1 − 11
6
λ + λ

60
b if b ∈ (80, 110].

By lemma 1, the best reply of wL2 to the distribution of sL0- and sL1-bidders is

bwL2mix(x) = 25 + 0.5x (x ∈ [50, 90]),

where wL2 submits uniformly distributed bids on [50, 70] as does wL1.

Strong L2 expects wL0 (bidding uniformly on [50, 90]) with probability λwL0
sL2 and

wL1 (bidding uniformly on [50, 70]) with probability 1−λwL0
sL2 . Thus, the bid distribution

expected by sL2 is two-step uniform with b̂ = 70, δA = (2−λ)/40, δB = λ/40 and follows

from definition 1 as

Bexp
sL2mix(b) =

{
2−λ
40

(b − 50) if b ∈ [50, 70],

1 − 9
4
λ + λ

40
b if b ∈ (70, 90].

By lemma 1, the best reply of sL2 to the distribution of wL0- and wL1-bidders is

bsL2mix(x) =






25 + 0.5x if x ∈ [50, 90],

70 if x ∈ [90, xλ],

45 − 20
λ

+ 0.5x if x ∈ [xλ, 110],

where xλ = 70 + 2−λ
λ

· 20 > 90 for λ < 1.
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It follows that sL2’s best reply is flat on an interval such that sL2 bids 70 with

strictly positive probability unless believing that the population consists of L0 players

only (λ = 1). Hence, wL3 believes that a bid of 70 is submitted with strictly positive

probability. It follows that the best reply of wL3 to sL2 is not defined for some values

analogously to the situation of wL3 playing against sL2 with certainty. Hence, there

are no best replies for wL3, sL4, . . . The best reply of sL3, however, exists and coincides

with that of sL2, but, for the same reasons as stated for wL, there are no best replies

for wL4, sL5, . . ., too.

B List of independent observations

date treatment place participants
20091102-1559-0 asymmetric Jena 10
20091102-1559-1 asymmetric Jena 8
20091110-1347-0 asymmetric Jena 10
20091110-1347-1 asymmetric Jena 8
20091112-1349-0 asymmetric Jena 8
20091112-1349-1 asymmetric Jena 8
20091112-1600-0 asymmetric Jena 10
20091112-1600-1 asymmetric Jena 8
20091110-1555 computer opp. Jena 17
20050511-10:51-0 expectations Magdeburg 10
20050511-10:51-1 expectations Magdeburg 10
20050511-14:55-0 expectations Magdeburg 10
20050511-14:55-1 expectations Magdeburg 10
20050512-09:01-0 expectations Magdeburg 10
20050512-09:01-1 expectations Magdeburg 8
20050512-12:59-0 expectations Magdeburg 8
20050512-12:59-1 expectations Magdeburg 8
20050207-10:53-0 expectations w. info Mannheim 8
20050209-14:09-0 expectations w. info Mannheim 12
20050209-16:11-0 expectations w. info Mannheim 6
20050414-10:37-0 expectations w. info Magdeburg 10
20050414-10:37-1 expectations w. info Magdeburg 10
20050414-16:35-0 expectations w. info Magdeburg 10
20050414-16:35-1 expectations w. info Magdeburg 10
20050415-08:59-0 expectations w. info Magdeburg 8
20050415-08:59-1 expectations w. info Magdeburg 8
20050415-11:11-0 expectations w. info Magdeburg 10
20050415-11:11-1 expectations w. info Magdeburg 10
20031211-18:23-0 no expectations Mannheim 14
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20031212-10:45-0 no expectations Mannheim 14
20040517-12:21-0 no expectations Mannheim 8
20040517-12:21-1 no expectations Mannheim 6
20040517-17:17-0 no expectations Mannheim 8
20040517-17:17-1 no expectations Mannheim 8
20040519-15:53-0 no expectations Mannheim 8
20040519-15:53-1 no expectations Mannheim 10
20050414-08:55-0 no expectations Magdeburg 10
20050414-08:55-1 no expectations Magdeburg 10
20050414-13:17-0 no expectations Magdeburg 10
20050414-13:17-1 no expectations Magdeburg 10

Table 10: List of all sessions

C Detailed estimation results for equation (7)

all asymmetric expectations w. info
(Intercept) 0.315∗∗ 0.206 0.414∗∗

[0.118; 0.512] [−0.147; 0.558] [0.128; 0.699]
βother 0.047∗∗∗ 0.034∗∗∗ 0.079∗∗∗

[0.040; 0.054] [0.024; 0.044] [0.069; 0.090]
Deviance 63239.878 25817.629 36712.601
indep.obs. 19 8 11
participants 172 70 102
N 9950 3830 6120

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 · 0.1. 95% confidence intervals are shown
in square brackets below coefficients. Confidence intervals and p-values are based on a
parametric bootstrap with 1000 replications.

D Detailed estimation results for equation (8)

all asymmetric expectations w. info
(Intercept) 0.281∗∗∗ 0.304∗ 0.236∗

[0.152; 0.410] [0.071; 0.537] [0.051; 0.420]
βother 0.055∗∗∗ 0.055∗∗∗ 0.056∗∗∗

[0.046; 0.064] [0.039; 0.071] [0.046; 0.065]
βown 0.282∗∗∗ 0.105∗∗∗ 0.478∗∗∗

[0.264; 0.300] [0.076; 0.134] [0.457; 0.499]
Deviance 58725.368 22618.006 35003.196
indep.obs. 19 8 11
participants 172 70 102
N 9620 3500 6120

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 · 0.1. 95% confidence intervals are shown
in square brackets below coefficients. Confidence intervals and p-values are based on a
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parametric bootstrap with 1000 replications.

E Conducting the experiment

Participants were recruited by email and could register for the experiment on the in-
ternet.

• At the beginning of the experiment participants drew balls from an urn to deter-
mine their allocation to seats in the laboratory.

• Then participants took a simple language test (participants had to find the correct
word or form to complete a sentence). Those who failed the language test on
at least two items out of ten could not participate (this did not happen very
often since participants knew about the language test when they booked the
experiment).

• The remaining participants obtained written instructions in German (see section
E.1). These instructions vary slightly depending on the treatment. In the follow-
ing we give a translation of the instructions.

• After answering control questions on the screen (see section E.2) subjects entered
the treatment. After completing the treatment they answered a short question-
naire on the screen and were paid in cash. The experiment was done with z-Tree
Version 3α (the final version is documented in Fischbacher, 2007).

E.1 Instructions

General information

You are participating in a scientific experiment that is sponsored by the Deutsche
Forschungsgemeinschaft (German Research Foundation). If you read the following in-
structions carefully then you can—depending on your decision—gain a considerable
amount of money. It is, hence, very important that you read the instructions carefully.

The instructions that you have received are only for your private information. During
the experiment no communication is permitted. Whenever you have questions,
please raise your hand. We will then answer your question at your seat. Not following
this rule leads to exclusion from the experiment and all payments.

During the experiment we are not talking about Euro, but about ECU (Experimental
Currency Unit). Your entire income will first be determined in ECU. The total amount
of ECU that you have obtained during the experiment will be converted into Euro at
the end and paid to you in cash. The conversion rate will be shown on your screen at
the beginning of the experiment.
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Information regarding the experiment

Today you are participating in an experiment on auctions. The experiment is divided
into separate rounds. We will conduct 12 rounds. In the following we explain what
happens in each round.

In each round you bid for an object that is being auctioned. Together with you another
participant is also bidding for the same object. Hence, in each round, there are two
bidders. In each round you will be allocated randomly to another participant for the
auction. Your co-bidder in the auction changes in every round. The bidder
with the highest bid has obtained the object. If bids are the same the object will be
allocated randomly.

For the auctioned object you have a valuation in ECU. This valuation lies between
50 and 100 ECU and is determined randomly in each round. From this range you
will obtain in each round new and random valuations for the object. The
other bidder in the auction also has a valuation for the object. The valuation that the
other bidder attributes to the object is determined by the same rules as your valuation
and changes in each round, too. All possible valuations of the other bidder are also in
the interval from 50 to 100 from which also your valuations are drawn. All valuations
between 50 and 100 are equally probable. Your valuations and those of the other player
are determined independently. You will be told your valuation in each round. You will
not know the valuation of the other bidder.

Experimental procedure

The experimental procedure is the same in each round and will be described in the
following. Each round in the experiment has two stages.

1st Stage

In the first stage of the experiment you see the following screen [[here the instructions
show a screen similar to figure 3 or figure 4. Other than the figure the screenshots in
the instructions did not provide an example bidding function.]]

At that stage you do not know your own valuation for the object in this round.
On the left side18 of the screen you are asked to enter a bid for six hypothetical
valuations that you might have for the object. These six hypothetical valuations are
50, 60, 70, 80, 90, and 100 ECU. Your input into this table will be shown in the graph on
the left side of the screen when you click on “draw bids”. In the graph the hypothetical
valuations are shown on the horizontal axis, the bids are shown on the vertical axis.
Your input in the table is shown as six points in the diagram. Neighbouring points

18In the no expectation treatment this was the right side.
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are connected with a line automatically. These lines determine your bids for all
valuations between the six valuations for which you have entered a bid.

[[the following paragraph is only shown in the treatments with expectations: On the right
side you are asked to enter your expectations regarding the bids of the other
bidder. Please enter again for six hypothetical valuations your expectation of the
bid of the other bidder. If your expectation regarding the bids of the other bidder
deviates from the actual bids of the other bidder then an amount which depends on the
size of the deviation will be subtracted from your account.]]

The screen of the other bidder looks identical. He also enters bids for six hypothet-
ical valuations [[the following only in treatments with expectations: and expectations
regarding your bids]]. You and the other bidder cannot see your mutual bids and
expectations.

2nd Stage

The actual auction takes place in the second stage of each round. In each round we will
play not only a single auction but five auctions. This is done as follows: Five times
a random valuation is determined that you have for the object. Similarly for the
other bidder five random valuations are determined. You see the following screen:

[[here the instructions show a screen similar to figure 5. Other than these figures the
screenshots in the instructions do not provide example bidding functions, bids, valua-
tions, and payoffs.]]

For each of your five valuations the computer determines your bid according to the graph
from stage 1. If a valuation is precisely 50, 60, 70, 80, 90, or 100 then the computer
takes the bid that you gave for this valuation. If a valuation is between these points
then your bid is determined according to the connecting line. In the same way the bids
of the other bidder are determined for his five valuations. Your bid is compared with
the one of the other bidder. The bidder with the higher bid has obtained the object.

Your income from the auction:

For each of the five auctions the following holds:

• The bidder with the higher bid gets the valuation he had for the object in this
auction added to his account minus his bid for the object.

• The bidder with the smaller bid gets no income from this auction.

[[[the next two paragraphs and the screenshot are only shown in the treatments with
expectations:
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The possible reduction if expectations are not correct The following screen
again shows the expectations you entered in the first stage:

[[here the instructions show a screen similar to figure 5 or 6. Other than these figures the
screenshots in the instructions do not provide examples for expected bidding functions,
no examples for income and no examples for a loss.]]

The average difference between your expectations and the actual bids of the other
bidder for the six hypothetical valuations 50, 60, 70, 80, and 100, multiplied with the
conversion factor that is shown on the screen, is subtracted from your account.]]]

You total income in a round is the sum of the ECU income from those
auctions in this round [[the following part is only shown in the treatments with
expectations: minus the reduction for your incorrect expectations regarding
the other bidder.]]

This ends one round of the experiment and you see in the next round again the input
screen from stage 1.

At the end of the experiment your total ECU income from all rounds will be converted
into Euro and paid to you in cash together with your Show-Up Fee of 3.00 Euro.

Please raise your hand if you have questions.

E.2 Control questions

After participants had read the instructions they were asked to answer control questions.
These questions were implemented with z-Tree. Questions were presented and answered
sequentially. When a question was answered correctly, participants saw the text “This
answer is correct” (in German). Otherwise participants saw the text “This answer is
not correct”. In this case they got a brief explanation how to derive the correct answer
for this question.

The structure of this treatment was (translated into English) as follows:

• The following control questions are supposed to improve your understanding of
the experiment. We use some arbitrarily chosen examples to make you familiar
with the calculation of profits and other rules in the auction.

Please answer the following questions. You can check yourselves whether your
answers are correct. The actual experiment will start after the last question.

• Please note: When you enter numbers with a decimal fraction you have to use
the decimal point as a separator, not the decimal comma.

• If you need a calculator, please click on the symbol on your screen.
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1. Assume your valuation is 63.25 ECU and your bid that is derived from the bid
function in the graph is 40 ECU. What is your income in this auction if

(a) the other bidder bids less than your bid?

(b) the other bidder bids more than your bid?

2. Assume your valuation is 50 ECU and your bid that is derived from the bid
function in the graph is 60 ECU. What is your income in this auction if

(a) the other bidder bids less than your bid?

(b) the other bidder bids more than your bid?

3. Assume your valuation in this auction is 76.20 ECU. What is your valuation in
the next auction?

• 76.20 ECU / one cannot say / 0 ECU

4. Assume your valuation in this auction is 51.67 ECU. What is the valuation of the
other bidder in this auction?

• one cannot say / 51.67 ECU / 100 ECU

5. The following table shows an example for your expectations regarding the bids of
the other bidder as well as the actual bids of the other bidder.

value expected bid actual bid
50 40 40
60 40 40
70 40 30
80 40 40
90 40 50
100 40 50

What amount will be subtracted from your account due to wrong expectations if
the conversion factor is 1?

6. Assume that in one round you have won one auction with a valuation of 80 ECU
and a bid of 62 ECU. Furthermore, you lost 7 ECU due to wrong expectations.
What is your total income from this round?

E.3 End of the experiment

At the end of the experiment participants completed a questionnaire, again with z-Tree.
From their answers we know that about 20% of all participants were female, their median
age was 23, about 68% were students of economics and business administration, 73%
had participated already in another experiment, and 33% already in another experiment
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with auctions (Participants could attend only one of the treatments we describe in this
paper). They found the experiment not very complicated (on a scale from 1 (not
complicated) to 5 (very complicated) the average rating was 1.56).

After participants had completed the questionnaire each of them obtained a sealed
envelope with their profit from the experiment and left the laboratory.

F Calculating best replies

We call the vector of own valuations myVal and the vector of opponent’s valuations
otherVal. The vector of expected bids of the opponent is called expect. We start our
search at the equilibrium bidding function myEqBid. The best reply is found by R’s
optimisation function:

> optRes <- optim(par = myEqBid, fn = function(x) -payMat(merge(mmVals(x,

+ myVal), monoBid(expect, otherVal)), sum = TRUE),

+ method = "BFGS")

whith the following functions:

> payMat

function(bothBids,sum=FALSE) {

xx <- within(bothBids,{

lcritObid <- pmin(pmax(minObid,minBid),maxBid)

rcritObid <- pmax(pmin(maxObid,maxBid),minBid)

rAval <- lval+(maxBid-lbid)*(rval-lval)/(rbid-lbid)

rCval <- lval+(rcritObid-lbid)*(rval-lval)/(rbid-lbid)

lCval <- lval+(lcritObid-lbid)*(rval-lval)/(rbid-lbid)

minAval <- pmin(rAval,rCval)

maxAval <- pmax(rAval,rCval)

minCval <- pmin(rCval,lCval)

maxCval <- pmax(rCval,lCval)

cPay <- ifelse(maxObid==minObid,0,(1 / (rval - lval) * (rbid - lbid) * width / (maxObid - minObid)

aPay <- (width * (1 - 1 / (rval - lval) * (rbid - lbid)) * (maxAval ^ 2 - minAval ^ 2)) / 0.2e1

})

if(sum) with(xx,sum(cPay)+sum(aPay))

else xx

}

> mmVals
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function(bid,val=c(50,60,70,80,90,100)) {

lbid<-bid

rbid<-c(bid[-1],NA)

lval<-val

rval<-c(val[-1],NA)

minBid<-pmin(lbid,rbid)

maxBid<-pmax(lbid,rbid)

as.data.frame(cbind(lbid,rbid,lval,rval,minBid,maxBid))[-length(bid),]

}

> monoBid

function(bid,val=c(50,60,70,80,90,100)) {

width<-c(val[-1],NA)-val

lbid<-bid

rbid<-c(bid[-1],NA)

minObid<-pmin(lbid,rbid)

maxObid<-pmax(lbid,rbid)

sbids <- sort(unique(bid))

nbids <- length(sbids)

xx <- as.data.frame(cbind(width,minObid,maxObid))[-length(bid),]

if (nbids>1) ox <- merge(xx,cbind(minB = sbids[-nbids],maxB = sbids[-1]),all=TRUE)

else ox <- merge(xx,cbind(minB = sbids,maxB = sbids),all=TRUE)

ox <- within(ox,share<-ifelse(maxObid==minObid,1,(maxB-minB)/(maxObid-minObid)) * width * (minB>=minObi

ox <- with(ox,aggregate(ox$share,list(minObid=minB,maxObid=maxB),sum))

names(ox)[3]<-c("width")

ox

}

G Statistical calculations are done in R

• R version 2.12.0 (2010-10-15), i386-pc-mingw32

• Base packages: base, datasets, graphics, grDevices, grid, methods, splines, stats,
utils

• Other packages: cacheSweave 0.4-5, car 2.0-6, filehash 2.1-1, lattice 0.19-13,
lme4 0.999375-37, MASS 7.3-8, Matrix 0.999375-44, memisc 0.95-31, nnet 7.3-1,
robustbase 0.5-0-1, robustX 1.1-2, stashR 0.3-3, survival 2.35-8, xtable 1.5-6

• Loaded via a namespace (and not attached): digest 0.4.2, nlme 3.1-97,
stats4 2.12.0, tools 2.12.0
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H Referee’s Appendix: Differences between the ex-

perienced and the inexperienced subjects

[This appendix is not intended for publication. ] The reason why we do not cover effects
regarding subjects prior participation in auction experiments is that our results remain
essentially unaffected by this type of experience. Importantly, our main results are
robust to differentiating between both experience levels of subjects. We find, however,
that the experienced subjects slightly overbid more in the treatment ‘no expectations’
and that, in the treatments with information feedback about the bidding strategy of
other subjects, expectations of the experienced bidders respond stronger to changes in
the bids of others. To give you the possibility to verify our assessments that the main
results remain unaffected and to check the results when we find significant effects, we
provide the relevant data analysis below. We did not include the data analysis in the
paper due to considerations of space.

1. Overview and insignificant income differences
A total of 102 subjects reported that they previously participated in auction
experiments. These subjects will be referred to as ‘experienced subjects’. The
average profit of an experienced subject was 10.64¤ with a standard deviation of
3.75¤ as compared to non-experienced subjects with average income of 10.37¤
and standard deviation 4.97¤ overall. The number of experienced subjects varies
across treatments considerably: only six experienced subjects participated in the
‘asymmetric’ treatment and only one experienced subject participated in the ‘com-
puterized opponents’ treatment, while there were around 30 experienced subjects
in every other treatment. Although we find regression results based on only one or
six subjects unreliable, we report them for the sake of completeness. To explore

independent
observations

participants

no expectations 10 27
expectations 8 35
expectations w. info 11 33
computer opp. 1 1
asymmetric 6 6
all 36 102

Table 11: Overview of treatments with experienced subjects

if there is any significant income difference due to experience, we estimate the
following mixed effects model

πik = β0 +
∑

T

βT · dT +
∑

T

βT
X · dT

X + νk + ǫik (18)

where πikt(x) is the total income of participant i in session k, dT is the treatment
dummy where ‘no expectations’ is the baseline and dT

X is the treatment dummy
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indicating an extra income due to experience in treatment T ; νk is the random
effect for the session and ǫik is the residual. Table 12 reports estimation results and
shows that the experienced subjects did not earn any significant extra income. To

β σ t p value 95% conf interval
(Intercept) 326 19.3 16.9 0.0000 288 364
asymmetric 2.45 32.2 0.0762 0.9393 -60.8 65.7
computer opp. 63.1 38.7 1.63 0.1043 -13.1 139
expectations -43.6 32.3 -1.35 0.1782 -107 20
expectations w. info -27.5 28.1 -0.978 0.3288 -82.8 27.8
dXasymmetric 10.8 56.4 0.192 0.8482 -100 122
dXcomputer opp. -45.9 144 -0.318 0.7505 -330 238
dXexpectations 51.6 30.1 1.72 0.0871 -7.56 111
dXexpectations w. info 33 28.6 1.15 0.2493 -23.2 89.2
dXno expectations -20.6 29.7 -0.693 0.4889 -78.9 37.8

Standard deviations, t-statistics, p-values, and confidence intervals are based on a parametric bootstrap
with 1000 replications. (We omit this statement in all following tables that provide regression results
in this response letter.)

Table 12: Mixed effects estimation of equation (19)

explore if there is any significant income difference due to experience, we estimate
the following mixed effects model

πik =
∑

T

βT · dT +
∑

T

βT
X · dT

X + νk + ǫik (19)

where πikt(x) is the total income of participant i in session k, dT is the treatment
dummy where ‘no expectations’ is the baseline and dT

X is the treatment dummy
indicating an extra income due to experience in treatment T ; νk is the random
effect for the session and ǫik is the residual. Table 12 reports estimation results
and shows that the experienced subjects did not earn any significant extra income.

2. Main results robust to distinguishing experience levels of subjects:

To test if the presence of experienced subjects affects our main results, we aug-
ment regression specifications (15) and (16) by dummy variables indicating prior
experience. Specifically, we introduce a dummy that allows for a shift in the in-
tercept and another dummy that allows for a different slope for the experienced
bidders.

b
opt|exp
ikt (x) = βBNE · bBNE(x) + βBNE

0 + βBNE
XdXbBNE(x) +

+βBNE
0 XdX + νi + νk + ǫiktx (20)

bikt(x) = βopt|exp · bopt|exp
ikt (x) + β

opt|exp
0 + βopt|exp

XdXb
opt|exp
ikt (x) +

+β
opt|exp
0 XdX + νi + νk + ǫiktx (21)
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The results of the mixed effects estimation of equations (20) and (21) are given
in tables 13 and 14.

expectations expectations w. info computer opp. asymmetric all
βBNE

0 −3.165∗∗∗ −4.281∗∗∗ −3.422∗∗∗ −4.697∗∗∗ −4.112∗∗∗

[−3.975;−2.355] [−5.054;−3.508] [−4.473;−2.370] [−5.686;−3.709] [−4.483;−3.741]
βBNE 0.982∗∗∗ 1.003∗∗∗ 0.943∗∗∗ 1.009∗∗∗ 0.995∗∗∗

[0.965; 0.999] [0.992; 1.014] [0.902; 0.984] [0.994; 1.024] [0.987; 1.004]
βBNE

0 X −1.091 0.482 0.352 −0.511 0.003
[−2.150;−0.032] [−0.309; 1.272] [−3.853; 4.557] [−2.763; 1.742] [−0.597; 0.603]

βBNE
X 0.018 −0.029∗∗ −0.000 0.099∗∗∗ 0.001

[−0.006; 0.042] [−0.049;−0.008] [−0.166; 0.166] [0.050; 0.149] [−0.014; 0.015]
Deviance 29912.023 39283.855 7825.348 29166.958 107075.934
indep.obs. 8 11 17 8 44
participants 74 102 17 70 263
N 5328 7344 1224 5040 18936

Table 13: Mixed effects estimation of equation (20)

First, consider the results reported in table 13 where best replies to held expecta-
tions are regressed on the equilibrium bid and the experience dummies. Clearly,
experience does not shift the intercept, the estimated coefficient βBNE

0 X of the in-
tercept dummy dX is insignificant in all treatments. For βBNE

X we find significant
estimates in the ‘asymmetric’ and in the ‘expectations with info’ treatments where,
importantly, the magnitude is quite small as compared to the estimated βBNE for
the inexperienced subjects. Further, when conducting a robustness check by rees-
timating with data only from the second half of the experiment (rounds 7-12),
the positive βBNE

X in the ‘asymmetric’ treatment becomes insignificant, while the
βBNE

X in the ‘expectations with info’ treatment remains significant and negative
of similar size. The estimates of the slopes are βBNE =1.003 for the inexperienced
bidders and βBNE + βBNE

X =0.974 for the experienced bidders, so that we find a
small effect here that is significant: The experienced bidders in the ‘experience
with info’ treatment form expectations such that their best replies are a little bid
closer to the equilibrium bids.

Second, consider the results reported in table 14 where actual bids are regressed
on best replies given held expectations and experience dummies. None of the
estimates of the intercept dummies on experience (β

opt|exp
0 X) is significant. The

coefficient βopt|exp
X is estimated significantly for all treatments except the ‘ex-

pectations’ treatment; in any case, since the number of experienced subjects in
the ‘asymmetric’ treatment (6 subjects) and in the ‘computer opponents’ treat-
ment (1 subject) is small, and, hence, results are not too reliable, we disregard
these two estimates. For the dummy on differences in slope in the ‘expecta-
tions with info’ treatment, we find a highly significant negative estimate that is
robust to reestimation with data only from the second half of the experiment.
The estimates for the slope are βopt|exp =1.675 for the inexperienced subjects and
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expectations expectations w. info computer opp. asymmetric all

β
opt|exp
0 2.302∗∗∗ 2.115∗∗∗ 4.976∗∗∗ 2.932∗∗∗ 2.745∗∗∗

[1.173; 3.431] [1.187; 3.042] [3.182; 6.770] [1.554; 4.311] [2.163; 3.327]
βopt|exp 1.551∗∗∗ 1.675∗∗∗ 1.251∗∗∗ 1.373∗∗∗ 1.506∗∗∗

[1.524; 1.579] [1.654; 1.697] [1.188; 1.314] [1.333; 1.412] [1.490; 1.522]

β
opt|exp
0 X 0.019 0.091 −6.089 −0.724 −0.534

[−1.436; 1.474] [−1.426; 1.607] [−13.550; 1.372] [−5.388; 3.939] [−1.625; 0.558]
βopt|exp

X 0.001 −0.123∗∗∗ 0.492∗∗∗ 0.259∗∗∗ 0.056∗∗∗

[−0.040; 0.042] [−0.162;−0.085] [0.220; 0.764] [0.128; 0.389] [0.024; 0.088]
Deviance 36182.944 50030.207 9325.076 39948.002 138471.631
indep.obs. 8 11 17 8 44
participants 74 102 17 70 263
N 5328 7344 1224 5040 18936

Table 14: Mixed effects estimation of equation (21)

βopt|exp + βopt|exp
X=1.552 for the experienced subjects in the ‘expectations with

info’ treatment. This means that the experienced bidders are slightly closer to the
best replies given their expectations as compared to the inexperienced bidders.

3. Experienced subjects overbid more in the ‘no expectation’ treatment:
Augmenting equation (4) with treatment-specific experience dummies that allow
for shifts in the intercept reveals a significant effect of experience on overbidding
in the baseline (‘no expectations’) treatment.

bikt(x) = β0 + β∗ · b∗(x) +
∑

T

βT · dT +
∑

T

βT
X · dXdT + νi + νk + ǫiktx (22)

Table 15 presents estimation results.

β σ t p value 95% conf interval
(Intercept) -7.95 0.666 -11.9 0.0000 -9.26 -6.65
b∗(x) 1.7 0.00603 281 0.0000 1.68 1.71
expectations 3.15 1.1 2.87 0.0042 0.994 5.3
expectations w. info 2.69 0.958 2.81 0.0049 0.816 4.57
computer opp. 2.19 1.35 1.62 0.1053 -0.461 4.84
asymmetric 0.601 0.984 0.61 0.5415 -1.33 2.53
dXno expectations 2.57 1.02 2.53 0.0113 0.582 4.56
dXexpectations -1.31 1.03 -1.27 0.2030 -3.32 0.706
dXexpectations w. info -0.699 0.943 -0.741 0.4588 -2.55 1.15
dXcomputer opp. -1.36 4.69 -0.29 0.7717 -10.5 7.83
dXasymmetric 2.49 1.94 1.28 0.2001 -1.32 6.3

Table 15: Mixed effects estimation of equation 22
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4. Expectations of experienced subjects respond stronger to changed
bids of other bidders:

Equations (7) regresses the change of stated expectations on the change of the
bid strategies played by other bidders. This allows to see if bidders pay attention
to the bidding behaviour of their opponents when forming expectations. Equa-
tion (8) adds the change in own bids to the regressors. Here we augment both
specifications by three experience dummies that allow for shifts in the intercept
(dX) and that allow for different slopes for the change in other bids (βother

X) and
own bids (βown

X).

∆tb
exp
ikx = βother · ∆t−1b

other
ikx + βother

XdX∆t−1b
other
ikx +

+β0 + β0XdX + νi + νk + ǫiktx (23)

∆tb
exp
ikx = βother · ∆t−1b

other
ikx + βother

XdX∆t−1b
other
ikx +

+βown · ∆tb
own
ikx + βown

XdX∆tb
own
ikx + β0 + νi + νk + ǫiktx (24)

Table 16 provides estimation results showing that the intercept for the experienced
bidders does not differ significantly from the one estimated for the inexperienced
subjects. Further, changed expectations of the experienced bidders respond more
pronouncedly to changes in the bids of other subjects in both specifications.

(23) (24)
(Intercept) 0.316∗∗ 0.290∗∗∗

[0.105; 0.526] [0.147; 0.432]
βother 0.043∗∗∗ 0.048∗∗∗

[0.036; 0.051] [0.038; 0.058]
dX 0.008 −0.020

[−0.405; 0.421] [−0.286; 0.247]
βother

X 0.026∗∗ 0.038∗∗

[0.007; 0.046] [0.015; 0.061]
βown 0.290∗∗∗

[0.271; 0.308]
βown

X −0.057∗

[−0.108;−0.007]
Deviance 63233.503 58711.148
indep.obs. 19 19
participants 172 172
N 9950 9620

Table 16: Mixed effects estimation of equations (23) and (24)
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