
Measurement errors of risk aversion
and how to correct them∗

Christoph Engel† Oliver Kirchkamp‡

17th March 2018

We provide an example for measurement errors which is common but also of-
ten neglected in economic experiments: In one task participants’ attitudes are
measured, in another task participants’ behaviour is related to this measurement.
How should we deal with imperfect measurements of these attitudes?

To correct for measurement errors one must first assess the magnitude of the
error. To do this one needs several measurements. Since repeated measurements
are deemed expensive and complicated, researchers tend to ignore the problem.

Here we show that (a) the problem exists and (b) if risk attitudes are elicited
with the help of amultiple price list task, then a simple solution exists. Seemingly
inconsistent answers in the task can be exploited to assess and to correct for the
measurement error.

We illustrate the problemwith an experimentwhich studies the relation between
risk aversion and punishment behaviour.
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1. Introduction
When we run laboratory experiments and when we try to structure the results of these ex-
periments, we sometimes combine two parts of an experiment. In one part of the experiment
we measure individual attitudes. These measurements are used to explain behaviour in an-
other part of the experiment. Clearly, one can not assume that these measurements are free
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of any errors. Traits and attitudes are unlikely to be stable across situations (Ross, Nisbett
and Gladwell, 2011). Attitudes will often only be imperfectly observed in post-experimental
tests.
For the econometrician the problem of an explanatory variable that is measured only with

some error is well known as one of “errors in variables”. If wewant to estimate Y = β0+β1ξ+
u, but we can observe ξ only with an error, e.g. we observe X ∼ N (ξ, σX), then estimating
Y = β0 + β1X + u with standard OLS provides a biased and inconsistent estimator for
β1. Already Adcock (1877) mentions the problem of measurement errors. Since then many
authors have contributed to the discussion (see Gillard, 2010, for an overview).
In the above problem our estimate for β1 is biased towards zero. The measurement error

makes it harder to find an effect if an effect exists. If, nevertheless, we find something, then
the true effectmust be even stronger. In this contextmeasurement errorsmight be considered
harmless.
The situation changes when further variables come into play. Let us assume we have two

explanatory variables, i.e. we estimate Y = β0 + β1ξ1 + β2ξ2 + u. Let us further assume
that ξ1 and ξ2 are positively correlated and ξ1 can only be observed with an error, i.e. we
only observe X1 ∼ N (ξ1, σX1

). Then estimating Y = β0 + β1X1 + β2ξ2 + u with standard
OLS underestimates β1 and overestimates β2. Neglecting the error in measuring ξ1 might
wrongly lead us to believe that ξ2 would matter, even when in reality ξ2 is irrelevant.
Hey and Orme (1994) points out the importance of error in understanding the relation

between preferences and economic decisions. The relevance of measurement errors for risk
preferences has been highlighted in a number of studies (Harrison et al. 2005; Loomes 2005;
Sahm 2012, to name only a few). Kimball, Sahm and Shapiro (2008) use an error in variables
model to interpret survey data on risk tolerance. Beauchamp, Cesarini and Johannesson
(2017) employ a latent variable model to assess the predictive power of risk-attitudes. Gil-
len, Snowberg and Yariv (2015) replicate three influential experimental studies (Niederle and
Vesterlund 2007, Friedman et al. 2014, Halevy 2007), pointing out that in all these studies
accounting for measurement error changes the interpretation of the results.
Still, the number of economic experiments which take into account measurement errors

is small. One reason might be that to correct for measurement errors one has to assess the
magnitude of the error. This assessment requires multiple measurements. Multiple meas-
urements are more expensive and more complicated than single measurements.
Here we propose a simpler approach: Instead of taking the measurement several times we

exploit inconsistencies in behaviour to estimate the precision of our measurement. More
specifically, we exploit that a very common task to measure risk aversion by Holt and Laury
(2002) is based on a multiple price list, i.e. a task which by construction requires multiple
measurements.

To demonstrate our approach we consider the following example: In one part of an exper-
iment we measure participants’ attitudes towards risk with the help of a Holt and Laury
(2002) task. Inconsistent answers, which are often considered to be a burden, turn out to
be a blessing as they allow us to assess the magnitude of the measurement error. We then
use the risk measure as an explanatory variable in a second task, here behaviour in a public
good game with punishment. We show how a joint estimation of both decision processes
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has two advantages: First, one uses the data from all participants, thus avoiding a selection
bias.1 Second, we can estimate, separately for each participant, the precision of the measure
for her risk attitude. This allows us to take into account the measurement error. We can
show that results change substantially if one respects the measurement error in the Holt and
Laury task.
The remainder of the paper is organized as follows: Section 2 introduces the design of

the example experiment from which the data are taken and that we use to illustrate our
methodological point. Section 3 discusses alternativemethods for dealing with inconsistency
in the measurement of risk attitudes. Section 4 uses simulations to assess the size of the bias
due to the measurement error in a more general context. Section 5 concludes.

2. Design of the Example Experiment
In our example we revisit the data from a four-person repeated public good game with pun-
ishment (Engel, 2014). The experiment was conducted in the Cologne Laboratory for Eco-
nomic Research in 2012. The experiment was implemented in zTree (Fischbacher, 2007).
Participants were invited using the software ORSEE (Greiner, 2004). Of 90 participants 80
were students of various majors with a mean age 25.4. 44% were female. Participants on av-
erage earned 15.11e (19.82$ on the days of the experiment), 14.80e for players in the public
good game, and 16.38e for players with the power to punish (authorities). The experiment
had 3 sessions of 30 participants (6 groups of 4 active participants; 6 passive authorities).
The aim of the experiment was to study the relation between attitudes to risk and the reac-

tion to punishment in a public good game. Fehr and Gächter (2000) show that if participants
in a public good game have the possibility to punish each other, contributions in the public
good game stabilize at a high level.
In the experiment four (active) participants i ∈ {1, . . . , 4} in group k contribute cikt in

round t to a linear public good. A fifth participant a (an authority) has the power to impose
a punishment ηikt on each active participant. Profits πikt of the active participants and πakt

of the authority are given by (1) and (2):

Profit of active participant i: πikt = 20− cikt + .4
∑
i

cikt − 3ηikt (1)

Profit of authority a: πakt = 25+ 20−
∑
i

ηikt (2)

The game is repeated for 11 periods. Participants are rematched every period to matching
groups of size 10.
After the main experiment, Engel (2014) administers (among several other tests) a test

for risk aversion, following Holt and Laury (2002). Holt and Laury design a task where
participants choose between a (safe) lottery with a small spread, p · 2$+(1−p) · 1.6$, and a

1Otherwise one does not estimate the effect of risk aversion on punishing behavior in the population, but the
effect of risk aversion on the punishing behavior of only those individuals whose reactions to risky choices
are highly consistent.
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Figure 1: Choices in the risk task
The panel shows choices for each participant: ◦ if the participant choses the lottery with the larger spread
(risky) and nothing if the participant chose the smaller spread (safe). Vertical reference lines denote participants
with inconsistent choices (see (4)). Participants are ordered by their risk attitudes, with the more risk seeking
participants at the left.

(risky) lottery with a large spread, p · 3.85$+(1−p) · .1$, where the probability of the good
outcome is p ∈ {.1, .2, .3, . . . , 1}.
In this experiment, Engel (2014) is interested in the impact of punishment on future cooper-

ation. Punishment in the most recent period is the most vivid experience and should have
the strongest effect. The more they are averse to risk, the stronger this signal should guide
choices in the subsequent period: risk averse participants loose more utility when punished
again. Engel (2014) investigates the following hypothesis:

Hypothesis 1 The more a participant is risk averse, the more she increases her contributions
to a linear public good after having been punished in the previous period.

3. How to Deal with an Inconsistent Measure for Risk
Attitudes?

3.1. Measuring risk aversion
To test Hypothesis 1, we need for each active participant a measure of her risk aversion.
Choices in the risk task for the 72 participants holding the active role are shown in Figure
1. Choices where a participant chose the lottery with the larger spread (risky) are denoted
with a ◦, choices where the participant chose the lottery with the smaller spread (safe) are
left blank.
If we assume that preferences for money follow e.g. CRRA, i.e. u(z) = z1−r, then the

critical value of pc where participants are indifferent between the more safe and the more
risky choice is a monotonic function of their relative risk aversion r. We can then either
describe participants by r or by their critical value of pc. In the following we will use pc

ik to
describe preferences of individual i in group k.
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In Figure 1. we have ordered participants from the most risk loving on the left to the most
risk averse on the right. If we could describe decision makers by a single switching point pc

ik

then the following holds:

choiceik(p) =


risky if p > pc

ik

either safe or risky if p = pc
ik

safe if p < pc
ik

(3)

We call a participant i in group k consistent if there is a pc
ik which rationalises all choices, i.e.

max{p|choiceik(p) = safe} ≤ pc
ik ≤ min{p|choiceik(p) = risky)} . (4)

We call a participant inconsistent if (4) does not hold, i.e. not all their choices can be ra-
tionalised with Equation (3). In Figure 1 vertical reference lines denote participants with
inconsistent choices. The choices of 18% of the participants in Engel (2014)’s experiment are
inconsistent.
One way to formalise consistent and inconsistent choices in the Holt and Laury task is the

logistic model. The probability of a risky choice of individual ik in lottery p could be written
as follows:

P(riskyik|p) = L ((p− pc
ik) ·

√
τik) with p ∈ {.1, .2, . . . , 1} (5)

Here L is the logistic function, p describes the probability of the good outcome in the Holt
and Laury task, pc

ik is be the critical value where participant ik is just indifferent between
the two choices, and τik is the precision of the observation.
While τik = ∞ would guarantee us only consistent choices, we will show below that a

value for τik between about 2 and 60 describes behaviour better. The smaller τik, the more
frequent are inconsistent choices.
One possible reaction to inconsistent choices is using an alternative test that forces consist-

ency. Eckel and Grossman (2008) directly ask participants for the switching point. Depend-
ing on the research question, this may be satisfactory. However, by enforcing consistent
choices for pc

ik we lose information about the decision maker’s precision τik of that choice.
Below we will argue that information about this precision may be useful.
Before we do this, let us come to the contributions in the public good game.

3.2. Contributions to the public good
To test Hypothesis 1 we have to explain changes in the contribution to the public good ∆cikt
as a function of previous punishment η and risk aversion pc

ik. We eventually want to estimate
the following model:

∆cikt = β0 + βηηik,t−1 + βpp
c
ik + βη×p ηik,t−1 · pc

ik + νk + ν ′
ik + ϵikt (6)

∆cikt is the change of contribution to the public good of individual i from matching group k

at time t. ηik,t−1 is the punishment received by individual i from group k at time t−1, i.e. the
punishment received in the previous period. pc

ik is a measure for risk aversion of individual
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Figure 2: Choices, switching points pc
ik and precision of choice τik

The bottom panel shows for each participant the actual choices: ◦ if the participant chose the more risky
lottery. Participants are ordered by their median switching points pc

ik as estimated from the B-JOINT model.
The solid line denotes the median estimated switching points pc

ik from B-JOINT. The dashed line shows the
estimated switching points from LOGIS. Vertical reference lines denote participants with inconsistent choices,
i.e. with more than one switching point. The panel in the middle shows the estimated values of the participant’s
precision, τ, from B-JOINT. The top panel shows the estimated value of β1 from LOGIS.

i from group k. νk is a random effect for group k. ν ′
ik is a random effect for individual i from

group k. ϵikt is the residual. In line with Hypothesis 1 we expect the interaction term βη×p

to be positive.

In the example study, the aim is to explain reactions to punishment as a function of the at-
titude towards risk. The latter is described as a switching point pc

ik in the Holt and Laury
task. In Section 3.3 we briefly discuss four alternative approaches to deal with inconsistent
choices. All four approaches can be used to estimate Equation (6), but all assume that pc

ik

could be measured with infinite precision. As a result all four approaches neglect the meas-
urement error. In Section 3.4 we estimate the decision process determining pc

ik jointly with
Equation (6). This approach offers a solution for the measurement error.
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3.3. No correction for the measurement error
3.3.1. Drop inconsistent observations (DROP)

This procedure removes from our sample the 18% of the participants which are inconsistent
according to (4). In Figure 2 these are the participants which are crossed out by a vertical
dashed line. For the remaining 82% of our participants we define the switching point as
follows:

p̂c,D
it =

max{p|choiceik(p) = safe}+min{p|choiceik(p) = risky)}
2

(7)

Figure 2 suggests that inconsistent behaviour could be more likely with risk seeking par-
ticipants. The DROP procedure might, hence, selectively remove risk seeking participants
from the sample. It also does not tell us anything about the precision of pc

ik, i.e. it does not
help us to address the measurement error.

3.3.2. Counting the number of safe choices (COUNT)

Holt and Laury (2002) propose to replace the switching point for inconsistent participants
by simply counting the number of safer choices. To ease the comparison with the other
measures we use the following linear transformation:

p̂c,C
it =

1

20
+

1

10

∑
p

[choiceik(p) = safe] (8)

Figure 2 shows the resulting estimates of risk preferences as a thick dotted line. This proced-
ure addresses the selection bias but not the measurement error.

3.3.3. A logistic regression to estimate switching points (LOGIS)

In Equation (5) we have used the logistic model to describe choices in the risk task. We can
rephrase this model as follows:

P(riskyik|p) = L (β0,ik + β1,ikp) where p ∈ {.1, .2, . . . , 1} (9)

The value of p where the P(riskyik|p) = 1/2, i.e. where individual i in group k chooses the
more risky and the safer lottery with equal probabilities, is our estimated switching point
p̂c,L
ik . It is given by

p̂c,L
ik = −β̂0,ik/β̂1,ik . (10)

The dashed line in the bottom part Figure 2 shows for each individual the critical value p̂c,L
ik

obtained with this method.2 As Figure 2 demonstrates, the results obtained with LOGIS are

2Note that LOGIS (the same way as the Bayesian methods) easily handles “inconsistent” participants. Figure
1 shows that we have 13 such participants in the dataset. We have no participants who, independent of p,
always choose the risky lottery. These participants would correspond to p̂c,L

ik < 0. We have two participants
who always choose the safe lottery. They correspond to p̂c,L

ik > 1.
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similar to COUNT, except for participants 13 and 42.3 The top part of the same figure shows
for each individual the coefficient β̂1,ik. When this coefficient is large, then P(riskyik|p) is
either close to 1 or close to 0 for most values of p. A large coefficient is, hence, a measure of
consistency. When we use maximum likelihood to estimate Equation (9) we should expect
that for consistent choices β̂1,ik → ∞. Since numerical precision is limited we find for
consistent choices in our estimation 605 ≤ |β̂1,ik| ≤ 613 which is clearly smaller than +∞,
but already sufficiently large to make sure that the actual choices are made almost with
certainty.4 Still, we should keep in mind that it is only numerical imprecision which yields
finite values where we should see a +∞.
Looking at Figure 2 again we see two (related) problems:

1. For the 18% inconsistent choices we have β̂1,ik ≤ 13. These choices are clearly more
noisy than the 82% consistent choices with β̂1,ik ≥ 605 but it is not obvious how to
exploit this difference in precision in our estimate of Equation (6).

2. The estimation of Equation (9) yields for two participants (13 and 42) negative values
for β̂1 (−6.1 and −610). These participants choose the safer lottery more frequently
when the probability of the good outcome is larger. The LOGIS model does not tell us
how to interpret such, seemingly perverse, choices.

We will argue below that these 18% inconsistent participants can serve two purposes. First,
although their observations are noisy, dropping them would lead to a selection bias. Second,
and more importantly, the noise of these observations allows us to take into account the
measurement error. If 18% of our participants clearly violate consistency, we should, perhaps,
not expect that we can measure the remaining 82% with infinite precision. The inconsistent
18% will allow us to better assess the precision of the remaining 82% consistent observations.

3.3.4. Estimation results for DROP, COUNT and LOGIS

Table 1 shows the estimation results for Equation (6) for different ways to deal with incon-
sistent observations. We see that, regardless which method we use here, the differences are
not very large. We find βη between 1.19 and 1.36, βp is never significant and between 0.339
and 1.13, and β̂η×p somewhere between -1.17 and -0.876.
Irrespective of the estimation procedure, a perfectly risk loving subject (pc = 0) increases

her contributions by more than 1 unit in response to any unit of punishment she has re-
ceived in the previous period. The more the participant is risk averse, the less intense her
reaction. Yet even a perfectly risk averse participant (pc = 1) still exhibits a small increase

3Since the logistic model is not fully identified it is only a convenient artefact of the numerical implementation
to find a unique answer to the question for the optimal switching point. If a participant has chosen the safer
lottery for all choicesp ≤ .6 and themore risky lottery for all choicesp ≥ .7, the logistic model will estimate
a switching point just in the middle between .6 and .7 at almost exactly .65.

4If a participant is just indifferent at pc, i.e. β0 + β1p
c = 0, then the next actual choice in the experiment

is made for p = pc + 1/20 and p = pc − 1/20. The probability of a safe or risky choice there is, hence,
L(β1,ik/20) and L(−β1,ik/20). For β1,ik = 605we have L(605/20) ≈ 1−7.29×10−14, L(−605/20) ≈
7.29× 10−14.
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DROP
β 2.5% 97.5%

0 -1.267 -2.776 0.171
η 1.356 0.663 2.050
p 1.130 -0.944 3.291

η× p -1.172 -2.198 -0.145
σ2 σ 1/σ2

ν ′
ik 0.000 0.000 Inf
νk 0.287 0.536 3.483

ϵikt 10.381 3.222 0.096

COUNT
β 2.5% 97.5%

-0.809 -2.025 0.423
1.208 0.699 1.702
0.457 -1.322 2.190
-0.909 -1.632 -0.166

σ2 σ 1/σ2

0.000 0.000 Inf
0.375 0.612 2.666

10.296 3.209 0.097

LOGIS
β 2.5% 97.5%

-0.732 -1.962 0.496
1.189 0.673 1.692
0.339 -1.427 2.085
-0.876 -1.608 -0.126

σ2 σ 1/σ2

0.000 0.000 Inf
0.379 0.616 2.638

10.301 3.210 0.097

Table 1: ME estimates of Equation (6).

of contributions in reaction to punishment (0.184 ≤ βη + βη×p ≤ 0.313 depending on the
model).

3.4. Accounting for the measurement error – joint estimation of (5)
and (6)

The previous three approaches treat the estimation pc
ik from Equation (5) and the estimation

of the impact of pc
ik on ∆cikt from Equation (6) as two unrelated problems. Here we suggest

that much can be gained if both problems are estimated together. We will use a Bayesian
approach. We do not want to enter a discussion on the comparative merits of the Bayesian
versus the frequentist framework (Bayarri and Berger, 2004, or Kass, 2011 may provide a
starting point for a discussion).
In the frequentist world the problem that we outline below could be described as a general-

ised multilevel structural equation (Rabe-Hesketh, Skrondal and Pickles, 2004). Neyman and
Scott (1948) and Solari (1969) have pointed out deficiencies in the maximum likelihood ap-
proach to estimate models with measurement errors. Bayesian estimation has been shown
to work well in the context of measurement errors for a long time and for a wide range
of situations.5 During the last decades Markov chain Monte Carlo methods have become a
powerful and accessible tool for Bayesian inference. Thus, the Bayesian approach lends itself
particularly well to estimate models with measurement errors.
Here we employ the Bayesian approach, in particular since it facilitates a transparent de-

scription of the two processes we want to estimate jointly. To ease the comparison with the
frequentist framework we base our estimations on vague priors.6 We will present the joint
model in Section 3.4.1. We will then demonstrate in Section 3.4.2 that, as long as the fre-
quentist and the Bayesian approach estimate similar models, the results are (as they should)
almost indistinguishable.7 We will then show in Section 3.4.3 that, once the measurement

5Arminger and Muthén (1998), Dellaportas and Stephens (1995), Florens, Mouchart and Richard (1974) and
Polasek and Krause (1993).

6For a frequentist analysis the Stata package gllamm or the R package lavaan might be useful.
7We use JAGS 4.0.0. to estimate Bayesian models. Estimates are based on four chains with each 1000 samples
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error is taken into account, results change substantially.

3.4.1. The joint model

Likelihoods: The likelihood of the Holt and Laury task is given by Equation (5). We re-
write Equation (6) to obtain the likelihood for the public good task as follows:

∆cikt ∼ N (β0 + βηηik,t−1 + βpp
c
ik + βη×p ηik,t−1 · pc

ik + νk + ν ′
ik, 1/

√
τϵ) (11)

Priors: We use the following (vague) priors:8

For the coefficients from Equation (11):
βl ∼ N (0, 100) with l ∈ {0, η, p, η× p} (12)

The group specific random effect in Equation (11):
νk ∼ N (0, 1/

√
τν); with τν ∼ Γ(m

2
ν/d

2
ν,mν/d

2
ν);mν ∼ Γ(1, 1); dν ∼ Γ(1, 1) (13)

The individual specific random effect in Equation (11):
ν ′
ik ∼ N (0, 1/

√
τν ′); with τν ′ ∼ Γ(m

2
ν ′/d

2
ν ′,mν ′/d2

ν ′);

mν ′ ∼ Γ(1, 1); dν ′ ∼ Γ(1, 1) (14)
For the switching point from the risk task, Equation (5):

pc
ik ∼ B(αc, βc) with αc ∼ Γ(2, 1/2);βc ∼ Γ(2, 1/2) (15)

For the precision of the switching point from Equation (5):
τik ∼ Γ(m

2/d2,m/d2); with m ∼ Γ(1, 1); d ∼ Γ(10, 0.1) (16)
The precision in Equation (11):

τϵ ∼ Γ(m
2
ϵ/d

2
ϵ,mϵ/d

2
ϵ); with mϵ ∼ Γ(1, 1); dϵ ∼ Γ(1, 1) (17)

While this notation might look a bit intricate for the novice, priors and likelihoods can in a
straightforward way be represented in JAGS or BUGS.9

3.4.2. Replicating LOGIS (B-LOGIS)

Before we come to the results of the joint estimation, let us use the Bayesian framework to
replicate the result of the mixed effect estimation of Equation (6). As above we would treat
both problems as unrelated. We would first estimate pc

ik for each participant (using Equation
(5), ignoring the public good game given by (11)). We would then, as if it was an independent
problem, estimate Equation (11), ignoring the risk assessment (5). For both steps we use
priors given by (12)-(17). Since the two problems are treated as unrelated, this procedure,

for adaptation, 4000 samples for burnin, and then, for each of the four chains, 100000 actual samples per
chain. To estimate the mixed effects model we use lme4 1.1-14. Frequentist confidence intervals are
based on normal bootstraps with 1000 samples.

8We use N (µ, σ) for the normal distribution, Γ(α,β) for the Gamma distribution and B(α,β) for the Beta
distribution. The second argument of N (µ, σ) is the standard deviation. τ = 1/σ2 is the precision. The
first argument of Γ(α,β) is shape α, the second is rate β.

9See http://www.kirchkamp.de/research/errorsInVar.html
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B-LOGIS
Mean 2.5% 97.5% SSeff psrf

0 -0.757 -2.103 0.572 4000 0.9998
η 1.212 0.697 1.726 3824 1.0002
p 0.356 -1.369 2.388 3818 1.0000

η× p -0.890 -1.640 -0.158 3943 1.0005
τν 7.966 1.372 21.299 4118 0.9998
τ ′
ν 2.234 0.376 4.704 4000 1.0010
τϵ 0.097 0.088 0.108 4000 0.9999

Table 2: Estimating Equations and (5) and (11) independently in the Bayesian Framework.
No correction is made for the measurement error. Results are, as they should be, quite similar to the LOGIS or
the COUNT model. We use 4 chains with 1000 samples each.

B-JOINT B-JOINT-DROP
Mean 2.5% 97.5% SSeff psrf

0 -1.765 -2.921 -0.513 3916 1.0002
η 3.248 2.223 4.325 3891 0.9999
p 1.745 0.253 3.445 4000 1.0001

η× p -3.640 -5.099 -2.114 4334 0.9998
τν 6.894 1.486 16.797 4411 1.0022
τ ′
ν 2.330 0.456 5.053 4265 1.0004
τϵ 0.109 0.097 0.122 4000 0.9999

Mean 2.5% 97.5% SSeff psrf
0 -2.479 -4.044 -1.052 3843 1.0007
η 4.248 2.982 5.468 3913 1.0010
p 2.785 0.725 4.857 3905 1.0013

η× p -5.156 -6.883 -3.256 4105 1.0010
τν 5.433 1.024 12.669 4041 1.0002
τ ′
ν 2.551 0.402 5.439 4257 1.0004
τϵ 0.114 0.100 0.128 4000 1.0004

Table 3: Joint estimation of Equations (5) and (11).
The joint estimation corrects for the measurement error. The B-JOINT model uses all data (left table). B-JOINT-
DROP uses only consistent participants (right table). We sample from 4 chains with 1000 samples each.

which we call B-LOGIS, ignores the measurement errors from the estimation of (5) when
estimating (11). Estimation results are shown in Table 2. Here the value for βη×p is -0.89,
i.e. similar to the corresponding estimate of the mixed effects model based on the LOGIS
estimate of pc

ik (βη×p = −0.876). Also the value for βη is with 1.21 similar to the LOGIS
estimate (βη×p = 1.19). Finally, also the value for βp is with 0.356 similar to the LOGIS
estimate (βη×p = 0.339). All this should be reassuring: If the Bayesian and the frequentist
framework have to solve similar problems, then both get very similar results.

3.4.3. B-JOINT

Next we joinly estimate Equations (5) and (11). This approach automatically weighs the
individual estimates of the risk attitude by their precision and, thus, takes into account the
measurement error. Priors are as given by Equations (12)-(17).

Equation (11): Estimation results (for the entire data set with 72 observations) are shown
in the left part of Table 3. Figure 3 shows the highest posterior density (HPD) and confidence
intervals for our estimates. The Figure illustrates the bias when not correcting for errors
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in the measurement of risk. The joint estimate of B-JOINT finds (in absolute terms) a sub-
stantially larger effect size for βη×p (-3.64) than the estimates we got from the models where
we did not control for the measurement error (between -1.17 and -0.876). In other words:
Correcting for the measurement error (and thereby weighting the individual measure of risk
attitude with its precision) changes the effect size by 210%.

Equation (5): Figure 2 shows the predicted switching points pc
ik as a solid line. The B-

JOINT estimate for pc
ik follows the estimates based on COUNT or LOGIS, in particular for

the central values of pc. For participants where LOGIS and COUNT estimate more extreme
values of pc, B-JOINT takes a more conservative approach. E.g. the extreme risk aversion
of the rightmost participants in Figure 2 is not really in line with the distribution of the
remaining values of pc

ik. B-JOINT estimates, hence, a smaller precision τik, and, accordingly,
adjusts the value of pc

ik more towards the centre of the distribution.
For individuals 13 and 42 (those, who choose the safer lottery more frequently when the

probability of the good outcome was larger) LOGIS estimates with Equation (9) a negative
slope β1 and, hence, a switching point which is economically meaningless. Without taking
into account the measurement error, this switching point enters the estimation of Equation
(6) with the same weight as any other observation. In contrast, the Bayesian model estimates
for these two observations a precision τik very close to zero.
The top panel in Figure 2 shows the value of β1 from Equation (9). The panel in the middle

shows the estimated precision τik from Equation (5). Comparing both panels, we see that the
B-JOINT estimates are more differentiated. The LOGIS estimates for β1 are either close to
positive or negative infinity, or close to zero. By contrast the B-JOINT estimates for precision
τik show a more detailed picture of deviation from utility maximising behaviour. For the
consistent choices the estimated parameter for τ is rather large with a median value of 57.4.
For the inconsistent choices τ covers a range from 1.68 to 47.6.

Selection bias versus measurement error: While the results of B-JOINT are based on
the entire dataset, including the inconsistent decision makers, we also estimate B-JOINT-
DROP, based on the same model but using only data from consistent decision makers. The
right part of Table 3 shows results only for the 59 consistent observations. The comparison
of the two models, B-JOINT and B-JOINT-DROP, allows us to decide whether our results
are mainly driven by accounting for the measurement error or by avoiding a selection bias.
Both models take into account the measurement error. Both models come to substantial
effect sizes for η× p: -5.16 for B-JOINT-DROP, and -3.64 for B-JOINT. Only B-JOINT avoids
the selection bias. Above we have seen that accounting for measurement errors changes
the coefficent βη×p by 210%. The selection bias, i.e. the difference between B-JOINT and
B-JOINT-DROP, affects the effect size by only 30%.

4. Simulation
Should one take into account measurement errors? The above result seems to suggest that
such a correction is desirable, but how general is this finding? Here we simulate 100 times a
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Figure 3: Highest posterior density and confidence invervals for Equation (6).
The figure shows 95% confidence intervals for the mixed effects model based on LOGIS, DROP and COUNT
estimates for pc

ik. The figure also shows 95% HPD intervals for three specifications of the Bayesian model:
B-LOGIS, which is a replication of the B-LOGIS model in the Bayesian framework based on consistent choices
only, B-JOINT-DROP, the joint model based on only consistent choices, and B-JOINT, the joint model for all
choices.

sample that is similar to the one we studied above. Each sample has a size of 100 participants
which come in 25 groups.
Behaviour in the risk task and in the public good game follows Equations (5) and (11).

The parameters of the regression are random and in the same order of magnitude as in our
experiment: βl ∼ N (0, 2) for l ∈ {0, η, p, η× p}. The random effects have a similar variance:
νk ∼ N (0,

√
1/5), ν ′

ik ∼ N (0,
√
2/7), ϵikt ∼ N (0,

√
10). The risk aversion also follows a

distribution similar to the one in our experiment: pc
ik ∼ B(6.98, 3.63), τik ∼ Γ(0.847, 0.2).

For each of the 100 simulations we obtain an estimate for the coefficients of Equation (6).
Here we are specifically interested in βη×p. Figure 4 shows for both methods COUNT and
B-JOINT quartiles of the difference between the estimates and the true values, β̂η×p −βη×p.
We see that B-JOINT performs fairly well. The difference β̂η×p − βη×p is close to zero. The
estimates of COUNT are clearly biased. They are too large in the negative and too small in
the positive domain. This bias is what we should expect if measurement errors are neglected.

5. Conclusion
We are clearly not alone in recommending that measurement errors should be taken into
account in experimental research. Researchers might have the impression, however, that
accounting for measurement errors with repeated measurements is tedious and expensive.
Many researchers seem to assume the problem away.
The aim of this paper is to convince the experimental community that it makes sense to
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Figure 4: Simulation results: Bias
The figure shows 25%, 50%, and 75% quantiles of a B-spline (df=5) for the bias β̂η×p−βη×p and for the different
models.

take measurement errors seriously, and that it is possible to correct for the resulting bias in a
straightforward and simple way, without making the experimental design more complicated.
Here we take advantage of the fact that a single Holt and Laury task is, actually, a multiple

price list task, i.e. the task already contains multiple measures. The fact that the Holt and
Laury task asks each participant to take multiple risky choices is not a nuisance. It enables
the researcher to assess the precision of his or her instrument.
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A. Posteriors for ατ, βτ and pc
ik

Figure 5 shows the prior and posterior distribution forpc and for the parametersατ = m2/d2,
βτ = m/d2 which determine the distribution of τik. In Equation (15) we assume pc

ik follows
a Beta distribution with parameters αc and βc following a Gamma distribution (so that a
priori pc

ik follows an almost uniform distribution). The median of the posterior parameters
areα = 7.89 andβ = 3.95, i.e., as we also see in the Figure, participants do avoid the extreme
values of pc and, not surprisingly, are more risk averse than risk loving.
In Equation (16) we assume that the precision τik is drawn from a Gamma distribution. The

median of the posterior shape parameter of this distribution isα = 1.16 and themedian of the
posterior rate parameter isβ = 0.027. Figure 6 shows the posterior distribution of τik as well
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Figure 6: Precision of choices for τik
The solid line show the posterior distribution of τik as in Equation (16). The dotted line shows the distribution
of the median of τik taken for each participant.

as the median values of τik for the individual participants. Conceptually, this is not entirely
trivial. Often we assume that “consistent” choices are infinitely precise, i.e. τ = ∞. However,
if some choices, here 18% of all participants, are inconsistent, i.e. contain a substantial lack
of precision (1.68 ≤ τ ≤ 47.6), it would be foolish to assume that the remaining 82% choices
are infinitely precise.
How can we assess the precision of choices? In Figure 6 we see how the estimator uses

the 18% inconsistent observations as a handle to estimate the left part of the distribution of
τ. On the right side of the distribution the value of 57.4 for the median consistent decision
maker results from the discrete steps in the Holt and Laury (2002) task which implies a finite
precision for the consistent choices.

B. Instructions
General Instructions In the following experiment, you can earn a substantial amount of money, de-
pending on your decisions. It is therefore very important that you read these instructions carefully.
During the experiment, any communication whatsoever is forbidden. If you have any questions,

please ask us. Disobeying this rule will lead to exclusion from the experiment and from all payments.
You will in any case receive 4 e for taking part in this experiment. In the first two parts of the experiment,

we do not speak not of e, but instead of Taler. Your entire income from these two parts of the experiment is
hence initially calculated in Taler. The total number of Taler you earn during the experiment is converted into
e at the end and paid to you in cash, at the rate of

1 Taler = 4 Eurocent.
The experiment consists of four parts. We will start by explaining the first part. You will receive separate

instructions for the other parts.
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Part One of the Experiment In the first part of the experiment, there are two roles: A and B. Four
participants who have the role A form a group. One participant who has the role B is allocated to each group.
The computer will randomly assign your role to you at the beginning of the experiment.

On the following pages, we will describe to you the exact procedure of this part of the experiment.

Information on the Exact Procedure of the Experiment This part of the experiment has
two steps. In the first step, role A participants make a decision on contributions to a project. In the second step,
the role B participant can reduce the role A participants’ income. At the start, each role A participant receives
20 Taler, which we refer to in the following as the endowment. Role B participants receive 20 points at the start
of step 2. We explain below how role B participants may use these points.

Step 1: In Step 1, only the four role A participants in a group make a decision. Each role A member’s
decision influences the income of all other role A players in the group. The income of player B is not affected
by this decision. As a role A participant, you have to decide how many of the 20 Taler you wish to invest in a
project and how many you wish to keep for yourself.

If you are a role A player, your income consists of two parts:

1. the Taler you have kept for yourself (“income retained from endowment”)

2. the “income from the project”. The income from the project is calculated as follows:
Your income from the project = 0.4 times the total sum of contributions to the project

Your income is therefore calculated as follows:

(20 Taler – your contribution to the project) + 0.4* (total sum of contributions to the project).

The income from the project of all role A groupmembers is calculated according to the same formula, i.e., each
role A group member receives the same income from the project. If, for example, the sum of the contributions
from all role A group members is 60 Taler, then you and all other role A group members receive an income
from the project of 0.4*60 = 24 Taler. If the role A group members have contributed a total of 9 Taler to the
project, then you and all other role A group members receive an income from the project of 0.4*9 = 3.6 Taler.

For every Taler that you keep for yourself, you earn an income of 1 Taler. If instead you contribute a Taler
from your endowment to your group’s project, the sum of the contributions to the project increases by 1 Taler
and your income from the project increases by 0.4*1 = 0.4 Taler. However, this also means that the income of all
other role A group members increases by 0.4 Taler, so that the total group income increases by 0.4*4 = 1.6 Taler.
In other words, the other role A group members also profit from your own contributions to the project. In
turn, you also benefit from the other group members’ contributions to the project. For every Taler that another
group member contributes to the project, you earn 0.4*1 = 0.4 Taler.

Please note that the role B participant cannot contribute to the project and does not earn any income from
the project.

Step 2: In Step 2, only the role B participant makes decisions. As role B participant, you may reduce or
maintain the income of every participant in Step 2 by distributing points.

At the beginning of Step 2, the four role A participants and the role B participant are told how much each of
the role A participants has contributed to the project.

As a role B player, you now have to decide, for each of the four role A participants, whether you wish to
distribute points to them and, if so, how many points you wish to distribute to them. You are obliged to enter
a figure. If you do not wish to change the income of a particular role A participant, please enter 0. Should you
choose a number greater than zero, you reduce the income of that particular participant. For each point that
you allocate to a participant, the income of this participant is reduced by 3 Taler.

The total Taler income of a role A participant from both steps is hence calculated using the following formula:

Income from Step 1 – 3 * (sum of points received)
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Please note that Taler income at the end of Step 2 can also be negative for role A participants. This can be
the case if the income-subtraction from points received is larger than the income from Step 1. However, the
role B participant can distribute a maximum of 20 points to all four role A members of the group. 20 points
are the maximum limit. As a role B participant, you can also distribute fewer points. It is also possible not to
distribute any points at all.

If you have role B, please state your reasons for your decision to distribute (or not to distribute) points, and
why you distributed a particular number of points, if applicable. In doing this, please try to be factual. Please
enter your statement in the corresponding space on your screen. You have 500 characters max. to do this.
Please note that, in order to send your statement, you will have to press “Enter” once each time. As soon as
you have done this, you will no longer be able to change what you have written.

The income of the role B participant does not depend on the income of the other role A participants, nor
on the income from the project. For taking part in the first part of the experiment, he or she receives a fixed
payment of

1 e.

In addition, the role B participant receives the sum of 0.01 e for each point that he or she did not distribute.
Once all participants have made their decisions, your screen will show your income for the period and your
total income so far.

After this, the first part of the experiment ends. You will then be told what your payment is for this part of
the experiment. Hence, you will also know how many points you and all other participants have been given
by player B.

Experiences from an Earlier Experiment For your information, we give you the following
graph, which tells you the average contributions made in a very similar experiment that was conducted in this
laboratory.

In this experiment, too, there were groups of 4 role A participants and one role B participant each. The role
A participants’ income was calculated in exactly the same way. The experiment had 10 equal periods. The role
B participant also had 20 points at his disposal in each period. At the end of each period, the role A participants
were told how much each of the other participants had contributed and how the role B participant had reacted
to this.
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Part Two of the Experiment The second part of the experiment consists of 10 repetitions of the first
part. Throughout the entire second part, all participants keep the role they had in the first part of the experiment.
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The computer randomly rematches the groups of four in every period. In each period, the computer randomly
assigns a role B participant to each group.

As a reminder: In each period, each role A participant receives 20 Taler, which may be contributed to the
project entirely, in part, or not at all. For each period, calculating the income from the project for the role A
participants in a group happens in exactly the same way as it did in the first part of the experiment. In each
period, each role B participant receives 20 points, which may be used to reduce the income of the players A in
the group. For each point that a role A participant receives in a period, 3 Taler are subtracted. For each point
that a role B participant does not use, he or she is given the sum of 0.01 e. In addition to the income from the
points retained, each role B participant receives a flat fee of 10 e for participating in this second part of the
experiment.

At the beginning of Step 2 of each period, the four role A participants and the role B participant are told how
much each of the role A participants contributed to the project.

Please note that the groups are rematched anew in each period.
After each period, you are told about your individual payoff. You are therefore also informed how many

points you and the other participants have been assigned by the role B participant.

Part Three of the Experiment We will now ask you to make some decisions. In order to do this, you
will be randomly paired with another participant. In several distribution decisions, you will be able to allocate
points to this other participant and to yourself by repeatedly choosing between two distributions, ‘A’ and ‘B’.
The points you allocate to yourself will be paid out to you at the end of the experiment at a rate of 500 points
= 1 e. At the same time, you are also randomly assigned to another participant in the experiment, who is, in
turn, also able to allocate points to you by choosing between distributions. This participant is not the same
participant as the one to whom you have been allocating points. The points allocated to you are also credited
to your account. The sum of all points you have allocated to yourself and those allocated to you by the other
participant are paid out to you at the end of the experiment at a rate of 500 points = 1 e. Please note that
the participants assigned to you in this part of the experiment are not the members of your group from the
preceding part of the experiment. You will therefore be dealing with other participants.

The individual decision tasks will look like this:
Possibility A

Your points:
The points of the par-
ticipant of the experi-
ment allocated to you:

0 500

A

Possibility B

Your points:
The points of the par-
ticipant of the experi-
ment allocated to you:

304 397

B
In this example: If you click ‘A’, you give yourself 0 points and 500 points to the participant allocated to you.

If you click ‘B’, you give yourself 304 points and 397 points to the participant allocated to you.
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